DOI QR코드

DOI QR Code

Intervention Planning Using a Laser Navigation System for CT-Guided Interventions: A Phantom and Patient Study

  • Gruber-Rouh, Tatjana (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt) ;
  • Lee, Clara (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt) ;
  • Bolck, Jan (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt) ;
  • Naguib, Nagy N.N. (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt) ;
  • Schulz, Boris (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt) ;
  • Eichler, Katrin (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt) ;
  • Aschenbach, Rene (Department of Radiology, HELIOS Klinikum Erfurt) ;
  • Wichmann, Julian L. (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt) ;
  • Vogl, Thomas.J. (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt) ;
  • Zangos, Stephan (Institute for Diagnostic and Interventional Radiology, J. W. Goethe University of Frankfurt)
  • Received : 2014.08.18
  • Accepted : 2015.05.13
  • Published : 2015.08.01

Abstract

Objective: To investigate the accuracy, efficiency and radiation dose of a novel laser navigation system (LNS) compared to those of free-handed punctures on computed tomography (CT). Materials and Methods: Sixty punctures were performed using a phantom body to compare accuracy, timely effort, and radiation dose of the conventional free-handed procedure to those of the LNS-guided method. An additional 20 LNS-guided interventions were performed on another phantom to confirm accuracy. Ten patients subsequently underwent LNS-guided punctures. Results: The phantom 1-LNS group showed a target point accuracy of $4.0{\pm}2.7mm$ (freehand, $6.3{\pm}3.6mm$; p = 0.008), entrance point accuracy of $0.8{\pm}0.6mm$ (freehand, $6.1{\pm}4.7mm$), needle angulation accuracy of $1.3{\pm}0.9^{\circ}$ (freehand, $3.4{\pm}3.1^{\circ}$; p < 0.001), intervention time of $7.03{\pm}5.18$ minutes (freehand, $8.38{\pm}4.09$ minutes; p = 0.006), and $4.2{\pm}3.6$ CT images (freehand, $7.9{\pm}5.1$; p < 0.001). These results show significant improvement in 60 punctures compared to freehand. The phantom 2-LNS group showed a target point accuracy of $3.6{\pm}2.5mm$, entrance point accuracy of $1.4{\pm}2.0mm$, needle angulation accuracy of $1.0{\pm}1.2^{\circ}$, intervention time of $1.44{\pm}0.22$ minutes, and $3.4{\pm}1.7$ CT images. The LNS group achieved target point accuracy of $5.0{\pm}1.2mm$, entrance point accuracy of $2.0{\pm}1.5mm$, needle angulation accuracy of $1.5{\pm}0.3^{\circ}$, intervention time of $12.08{\pm}3.07$ minutes, and used $5.7{\pm}1.6$ CT-images for the first experience with patients. Conclusion: Laser navigation system improved accuracy, duration of intervention, and radiation dose of CT-guided interventions.

Keywords

References

  1. Moser C, Becker J, Deli M, Busch M, Boehme M, Groenemeyer DH. A novel Laser Navigation System reduces radiation exposure and improves accuracy and workflow of CT-guided spinal interventions: a prospective, randomized, controlled, clinical trial in comparison to conventional freehand puncture. Eur J Radiol 2013;82:627-632 https://doi.org/10.1016/j.ejrad.2012.10.028
  2. Nitta N, Takahashi M, Tanaka T, Takazakura R, Sakashita Y, Furukawa A, et al. Laser-guided computed tomography puncture system: simulation experiments using artificial phantom lesions and preliminary clinical experience. Radiat Med 2007;25:187-193 https://doi.org/10.1007/s11604-006-0116-0
  3. Yang CL, Yang BD, Lin ML, Wang YH, Wang JL. A patient-mount navigated intervention system for spinal diseases and its clinical trial on percutaneous pulsed radiofrequency stimulation of dorsal root ganglion. Spine (Phila Pa 1976) 2010;35:E1126-E1132 https://doi.org/10.1097/BRS.0b013e3181e11d73
  4. Krombach GA, Schmitz-Rode T, Wein BB, Meyer J, Wildberger JE, Brabant K, et al. Potential of a new laser target system for percutaneous CT-guided nerve blocks: technical note. Neuroradiology 2000;42:838-841 https://doi.org/10.1007/s002340000433
  5. Tovar-Arriaga S, Tita R, Pedraza-Ortega JC, Gorrostieta E, Kalender WA. Development of a robotic FD-CT-guided navigation system for needle placement-preliminary accuracy tests. Int J Med Robot 2011;7:225-236 https://doi.org/10.1002/rcs.393
  6. Kloeppel R, Weisse T, Deckert F, Wilke W, Pecher S. CT-guided intervention using a patient laser marker system. Eur Radiol 2000;10:1010-1014 https://doi.org/10.1007/s003300051054
  7. Palestrant AM. Comprehensive approach to CT-guided procedures with a hand-held guidance device. Radiology 1990;174:270-272 https://doi.org/10.1148/radiology.174.1.2294561
  8. Bale R, Widmann G. Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 2007;16:196-204 https://doi.org/10.1080/13645700701520578
  9. Ritter M, Rassweiler MC, Hacker A, Michel MS. Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol 2013;31:1147-1151 https://doi.org/10.1007/s00345-012-0847-8
  10. Zangos S, Muller C, Mayer F, Naguib NN, Nour-Eldin NE, Hansmann ML, et al. [Retrospective 5-year analysis of MR-guided biopsies in a low-field MR system]. Rofo 2009;181:658-663 https://doi.org/10.1055/s-0028-1109349
  11. Schell B, Eichler K, Mack MG, Muller C, Kerl JM, Czerny C, et al. [Robot-assisted biopsies in a high-field MRI system - first clinical results]. Rofo 2012;184:42-47 https://doi.org/10.1055/s-0031-1281774
  12. Moche M, Zajonz D, Kahn T, Busse H. MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: preliminary clinical experience and limitations. J Magn Reson Imaging 2010;31:964-974 https://doi.org/10.1002/jmri.21990
  13. Zangos S, Melzer A, Eichler K, Sadighi C, Thalhammer A, Bodelle B, et al. MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology 2011;259:903-910 https://doi.org/10.1148/radiol.11101559
  14. Becker HC, Meissner O, Waggershauser T. [C-arm CT-guided 3D navigation of percutaneous interventions]. Radiologe 2009;49:852-855 https://doi.org/10.1007/s00117-009-1866-3
  15. Proschek D, Kafchitsas K, Rauschmann MA, Kurth AA, Vogl TJ, Geiger F. Reduction of radiation dose during facet joint injection using the new image guidance system SabreSource: a prospective study in 60 patients. Eur Spine J 2009;18:546-553 https://doi.org/10.1007/s00586-008-0832-5
  16. Jacobi V, Thalhammer A, Kirchner J. Value of a laser guidance system for CT interventions: a phantom study. Eur Radiol 1999;9:137-140 https://doi.org/10.1007/s003300050644
  17. Penzkofer T, Bruners P, Isfort P, Schoth F, Gunther RW, Schmitz-Rode T, et al. Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim Invasive Ther Allied Technol 2011;20:226-233 https://doi.org/10.3109/13645706.2011.553256
  18. Appelbaum L, Sosna J, Nissenbaum Y, Benshtein A, Goldberg SN. Electromagnetic navigation system for CT-guided biopsy of small lesions. AJR Am J Roentgenol 2011;196:1194-1200 https://doi.org/10.2214/AJR.10.5151
  19. Penzkofer T, Isfort P, Bruners P, Wiemann C, Kyriakou Y, Kalender WA, et al. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments. Eur Radiol 2010;20:2656-2662 https://doi.org/10.1007/s00330-010-1837-0
  20. Magnusson A, Radecka E, Lonnemark M, Raland H. Computed-tomography-guided punctures using a new guidance device. Acta Radiol 2005;46:505-509 https://doi.org/10.1080/02841850510021508

Cited by

  1. Computed tomography-guided biopsies in children: accuracy, efficiency and dose usage vol.43, pp.1, 2015, https://doi.org/10.1186/s13052-016-0319-7
  2. A radiopaque 3D printed, anthropomorphic phantom for simulation of CT-guided procedures vol.28, pp.11, 2015, https://doi.org/10.1007/s00330-018-5481-4
  3. Infrared needle mapping to assist biopsy procedures and training vol.5, pp.2, 2018, https://doi.org/10.1049/htl.2017.0045
  4. Scout-guided needle placement-a technical approach for dose reduction in CT-guided periradicular infiltration vol.62, pp.3, 2015, https://doi.org/10.1007/s00234-019-02339-1
  5. Patient-specific templates for image-guided intervention - a phantom study vol.29, pp.5, 2020, https://doi.org/10.1080/13645706.2019.1626251