DOI QR코드

DOI QR Code

Coronary Artery Imaging in Children

  • Goo, Hyun Woo (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2014.10.29
  • Accepted : 2014.12.25
  • Published : 2015.04.01

Abstract

Coronary artery problems in children usually have a significant impact on both short-term and long-term outcomes. Early and accurate diagnosis, therefore, is crucial but technically challenging due to the small size of the coronary artery, high heart rates, and limited cooperation of children. Coronary artery visibility on CT and MRI in children is considerably improved with recent technical advancements. Consequently, CT and MRI are increasingly used for evaluating various congenital and acquired coronary artery abnormalities in children, such as coronary artery anomalies, aberrant coronary artery anatomy specific to congenital heart disease, Kawasaki disease, Williams syndrome, and cardiac allograft vasculopathy.

Keywords

References

  1. Lederlin M, Thambo JB, Latrabe V, Corneloup O, Cochet H, Montaudon M, et al. Coronary imaging techniques with emphasis on CT and MRI. Pediatr Radiol 2011;41:1516-1525 https://doi.org/10.1007/s00247-011-2222-0
  2. Goo HW. State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol 2010;11:4-18 https://doi.org/10.3348/kjr.2010.11.1.4
  3. Tang L, Merkle N, Schar M, Korosoglou G, Solaiyappan M, Hombach V, et al. Volume-targeted and whole-heart coronary magnetic resonance angiography using an intravascular contrast agent. J Magn Reson Imaging 2009;30:1191-1196 https://doi.org/10.1002/jmri.21903
  4. Vranicar M, Hirsch R, Canter CE, Balzer DT. Selective coronary angiography in pediatric patients. Pediatr Cardiol 2000;21:285-288 https://doi.org/10.1007/s002460010064
  5. Attili A, Hensley AK, Jones FD, Grabham J, DiSessa TG. Echocardiography and coronary CT angiography imaging of variations in coronary anatomy and coronary abnormalities in athletic children: detection of coronary abnormalities that create a risk for sudden death. Echocardiography 2013;30:225-233 https://doi.org/10.1111/echo.12030
  6. Goo HW. Cardiac MDCT in children: CT technology overview and interpretation. Radiol Clin North Am 2011;49:997-1010 https://doi.org/10.1016/j.rcl.2011.06.001
  7. Goo HW. Current trends in cardiac CT in children. Acta Radiol 2013;54:1055-1062 https://doi.org/10.1258/ar.2012.120452
  8. Weininger M, Barraza JM, Kemper CA, Kalafut JF, Costello P, Schoepf UJ. Cardiothoracic CT angiography: current contrast medium delivery strategies. AJR Am J Roentgenol 2011;196:W260-W272 https://doi.org/10.2214/AJR.10.5814
  9. Kim JW, Goo HW. Coronary artery abnormalities in Kawasaki disease: comparison between CT and MR coronary angiography. Acta Radiol 2013;54:156-163 https://doi.org/10.1258/ar.2012.120484
  10. Mendoza DD, Joshi SB, Weissman G, Taylor AJ, Weigold WG. Viability imaging by cardiac computed tomography. J Cardiovasc Comput Tomogr 2010;4:83-91 https://doi.org/10.1016/j.jcct.2010.01.019
  11. Goo HW, Suh DS. Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 2006;36:344-351 https://doi.org/10.1007/s00247-005-0105-y
  12. Goo HW, Suh DS. The influences of tube voltage and scan direction on combined tube current modulation: a phantom study. Pediatr Radiol 2006;36:833-840 https://doi.org/10.1007/s00247-006-0177-3
  13. Yang DH, Goo HW. Pediatric 16-slice CT protocols: radiation dose and image quality. J Korean Radiol Soc 2008;59:333-347 https://doi.org/10.3348/jkrs.2008.59.5.333
  14. Goo HW. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 2011;41:839-847 https://doi.org/10.1007/s00247-011-2121-4
  15. Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 2012;13:1-11 https://doi.org/10.3348/kjr.2012.13.1.1
  16. Tsai IC, Goo HW. Cardiac CT and MRI for congenital heart disease in Asian countries: recent trends in publication based on a scientific database. Int J Cardiovasc Imaging 2013;29 Suppl 1:1-5
  17. Makowski MR, Wiethoff AJ, Uribe S, Parish V, Botnar RM, Bell A, et al. Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent. Radiology 2011;260:680-688 https://doi.org/10.1148/radiol.11102327
  18. Greil GF, Seeger A, Miller S, Claussen CD, Hofbeck M, Botnar RM, et al. Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr Radiol 2007;37:666-673 https://doi.org/10.1007/s00247-007-0498-x
  19. Hussain T, Fenton M, Peel SA, Wiethoff AJ, Taylor A, Muthurangu V, et al. Detection and grading of coronary allograft vasculopathy in children with contrast-enhanced magnetic resonance imaging of the coronary vessel wall. Circ Cardiovasc Imaging 2013;6:91-98 https://doi.org/10.1161/CIRCIMAGING.112.975797
  20. Taylor AM, Dymarkowski S, Hamaekers P, Razavi R, Gewillig M, Mertens L, et al. MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 2005;234:542-547 https://doi.org/10.1148/radiol.2342032059
  21. Tacke CE, Kuipers IM, Groenink M, Spijkerboer AM, Kuijpers TW. Cardiac magnetic resonance imaging for noninvasive assessment of cardiovascular disease during the follow-up of patients with Kawasaki disease. Circ Cardiovasc Imaging 2011;4:712-720 https://doi.org/10.1161/CIRCIMAGING.111.965996
  22. Goo HW, Park IS, Ko JK, Kim YH, Seo DM, Yun TJ, et al. Visibility of the origin and proximal course of coronary arteries on non-ECG-gated heart CT in patients with congenital heart disease. Pediatr Radiol 2005;35:792-798 https://doi.org/10.1007/s00247-005-1482-y
  23. Tsai IC, Lee T, Chen MC, Fu YC, Jan SL, Wang CC, et al. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol 2007;37:818-825 https://doi.org/10.1007/s00247-007-0512-3
  24. Ben Saad M, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF. Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 2009;39:668-676 https://doi.org/10.1007/s00247-009-1209-6
  25. Goo HW, Yang DH. Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol 2010;40:1670-1680 https://doi.org/10.1007/s00247-010-1693-8
  26. Takemura A, Suzuki A, Inaba R, Sonobe T, Tsuchiya K, Omuro M, et al. Utility of coronary MR angiography in children with Kawasaki disease. AJR Am J Roentgenol 2007;188:W534-W539 https://doi.org/10.2214/AJR.05.1414
  27. Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, et al. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology 2011;259:240-247 https://doi.org/10.1148/radiol.10100828
  28. Goo HW, Seo DM, Yun TJ, Park JJ, Park IS, Ko JK, et al. Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease: multislice CT findings. Pediatr Radiol 2009;39:265-273 https://doi.org/10.1007/s00247-008-1111-7
  29. Shriki JE, Shinbane JS, Rashid MA, Hindoyan A, Withey JG, DeFrance A, et al. Identifying, characterizing, and classifying congenital anomalies of the coronary arteries. Radiographics 2012;32:453-468 https://doi.org/10.1148/rg.322115097
  30. Pena E, Nguyen ET, Merchant N, Dennie G. ALCAPA syndrome: not just a pediatric disease. Radiographics 2009;29:553-565 https://doi.org/10.1148/rg.292085059
  31. Miller JA, Anavekar NS, El Yaman MM, Burkhart HM, Miller AJ, Julsrud PR. Computed tomographic angiography identification of intramural segments in anomalous coronary arteries with interarterial course. Int J Cardiovasc Imaging 2012;28:1525-1532 https://doi.org/10.1007/s10554-011-9936-9
  32. Zenooz NA, Habibi R, Mammen L, Finn JP, Gilkeson RC. Coronary artery fistulas: CT findings. Radiographics 2009;29:781-789 https://doi.org/10.1148/rg.293085120
  33. Hu X, Wu L, Liu F, Shen Q, Pa M, Huang G. Coronary artery fistulas in children. Evaluation with 64-slice multidetector CT. Herz 2013;38:729-735 https://doi.org/10.1007/s00059-013-3786-2
  34. Marini D, Agnoletti G, Brunelle F, Bonnet D, Ou P. Left coronary to right ventricle fistula in a child: management strategy based on cardiac-gated 64-slice CT. Pediatr Radiol 2008;38:325-327 https://doi.org/10.1007/s00247-007-0664-1
  35. Seguela PE, Houyel L, Loget P, Piot JD, Paul JF. Critical stenosis of a right ventricle to coronary artery fistula seen at dual-source CT in a newborn with pulmonary atresia and intact ventricular septum. Pediatr Radiol 2011;41:1069-1072 https://doi.org/10.1007/s00247-011-2068-5
  36. Tsai WL, Wei HJ, Tsai IC. High-take-off coronary artery: a haemodynamically minor, but surgically important coronary anomaly. Pediatr Radiol 2010;40:232-233 https://doi.org/10.1007/s00247-009-1413-4
  37. Goo HW, Park IS, Ko JK, Kim YH, Seo DM, Yun TJ, et al. CT of congenital heart disease: normal anatomy and typical pathologic conditions. Radiographics 2003;23 Spec No:S147-S165 https://doi.org/10.1148/rg.23si035501
  38. Goo HW, Park IS, Ko JK, Kim YH, Seo DM, Park JJ. Computed tomography for the diagnosis of congenital heart disease in pediatric and adult patients. Int J Cardiovasc Imaging 2005;21:347-365; discussion 367 https://doi.org/10.1007/s10554-004-4015-0
  39. Nie P, Wang X, Cheng Z, Ji X, Duan Y, Chen J. Accuracy, image quality and radiation dose comparison of high-pitch spiral and sequential acquisition on 128-slice dual-source CT angiography in children with congenital heart disease. Eur Radiol 2012;22:2057-2066 https://doi.org/10.1007/s00330-012-2479-1
  40. Beerbaum P, Sarikouch S, Laser KT, Greil G, Burchert W, Korperich H. Coronary anomalies assessed by whole-heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magn Reson Imaging 2009;29:320-327 https://doi.org/10.1002/jmri.21655
  41. Yu FF, Lu B, Gao Y, Hou ZH, Schoepf UJ, Spearman JV, et al. Congenital anomalies of coronary arteries in complex congenital heart disease: diagnosis and analysis with dual-source CT. J Cardiovasc Comput Tomogr 2013;7:383-390 https://doi.org/10.1016/j.jcct.2013.11.004
  42. Sengupta PP, Saxena A, Rajani M. Left main coronary artery compression by aneurysmal pulmonary artery in a patient with tetralogy of Fallot with absent pulmonary valve. Catheter Cardiovasc Interv 1999;46:438-440 https://doi.org/10.1002/(SICI)1522-726X(199904)46:4<438::AID-CCD10>3.0.CO;2-6
  43. Kajita LJ, Martinez EE, Ambrose JA, Lemos PA, Esteves A, Nogueira da Gama M, et al. Extrinsic compression of the left main coronary artery by a dilated pulmonary artery: clinical, angiographic, and hemodynamic determinants. Catheter Cardiovasc Interv 2001;52:49-54 https://doi.org/10.1002/1522-726X(200101)52:1<49::AID-CCD1012>3.0.CO;2-0
  44. Safi M, Eslami V, Shabestari AA, Saadat H, Namazi MH, Vakili H, et al. Extrinsic compression of left main coronary artery by the pulmonary trunk secondary to pulmonary hypertension documented using 64-slice multidetector computed tomography coronary angiography. Clin Cardiol 2009;32:426-428 https://doi.org/10.1002/clc.20457
  45. Ou P, Celermajer DS, Marini D, Agnoletti G, Vouhe P, Brunelle F, et al. Safety and accuracy of 64-slice computed tomography coronary angiography in children after the arterial switch operation for transposition of the great arteries. JACC Cardiovasc Imaging 2008;1:331-339 https://doi.org/10.1016/j.jcmg.2008.02.005
  46. Marini D, Agnoletti G, Brunelle F, Sidi D, Bonnet D, Ou P. Cardiac CT angiography after coronary artery surgery in children using 64-slice CT scan. Eur J Radiol 2009;71:492-497 https://doi.org/10.1016/j.ejrad.2008.06.008
  47. Ou P, Kutty S, Khraiche D, Sidi D, Bonnet D. Acquired coronary disease in children: the role of multimodality imaging. Pediatr Radiol 2013;43:444-453 https://doi.org/10.1007/s00247-012-2478-z
  48. Goo HW, Park IS, Ko JK, Kim YH. Coronary CT angiography and MR angiography of Kawasaki disease. Pediatr Radiol 2006;36:697-705 https://doi.org/10.1007/s00247-006-0182-6
  49. Arnold R, Ley S, Ley-Zaporozhan J, Eichhorn J, Schenk JP, Ulmer H, et al. Visualization of coronary arteries in patients after childhood Kawasaki syndrome: value of multidetector CT and MR imaging in comparison to conventional coronary catheterization. Pediatr Radiol 2007;37:998-1006 https://doi.org/10.1007/s00247-007-0566-2
  50. Peng Y, Zeng J, Du Z, Sun G, Guo H. Usefulness of 64-slice MDCT for follow-up of young children with coronary artery aneurysm due to Kawasaki disease: initial experience. Eur J Radiol 2009;69:500-509 https://doi.org/10.1016/j.ejrad.2007.11.024
  51. Carbone I, Cannata D, Algeri E, Galea N, Napoli A, De Zorzi A, et al. Adolescent Kawasaki disease: usefulness of 64-slice CT coronary angiography for follow-up investigation. Pediatr Radiol 2011;41:1165-1173 https://doi.org/10.1007/s00247-011-2141-0
  52. Yu Y, Sun K, Wang R, Li Y, Xue H, Yu L, et al. Comparison study of echocardiography and dual-source CT in diagnosis of coronary artery aneurysm due to Kawasaki disease: coronary artery disease. Echocardiography 2011;28:1025-1034 https://doi.org/10.1111/j.1540-8175.2011.01486.x
  53. Duan Y, Wang X, Cheng Z, Wu D, Wu L. Application of prospective ECG-triggered dual-source CT coronary angiography for infants and children with coronary artery aneurysms due to Kawasaki disease. Br J Radiol 2012;85:e1190-e1197 https://doi.org/10.1259/bjr/18174517
  54. Gray JC 3rd, Krazinski AW, Schoepf UJ, Meinel FG, Pietris NP, Suranyi P, et al. Cardiovascular manifestations of Williams syndrome: imaging findings. J Cardiovasc Comput Tomogr 2013;7:400-407 https://doi.org/10.1016/j.jcct.2013.11.007
  55. Ergul Y, Nisli K, Kayserili H, Karaman B, Basaran S, Dursun M, et al. Evaluation of coronary artery abnormalities in Williams syndrome patients using myocardial perfusion scintigraphy and CT angiography. Cardiol J 2012;19:301-308 https://doi.org/10.5603/CJ.2012.0053
  56. Rohnean A, Houyel L, Sigal-Cinqualbre A, To NT, Elfassy E, Paul JF. Heart transplant patient outcomes: 5-year mean follow-up by coronary computed tomography angiography. Transplantation 2011;91:583-588 https://doi.org/10.1097/TP.0b013e3182088b96
  57. Mittal TK, Panicker MG, Mitchell AG, Banner NR. Cardiac allograft vasculopathy after heart transplantation: electrocardiographically gated cardiac CT angiography for assessment. Radiology 2013;268:374-381 https://doi.org/10.1148/radiol.13121440
  58. Rackley C, Schultz KR, Goldman FD, Chan KW, Serrano A, Hulse JE, et al. Cardiac manifestations of graft-versus-host disease. Biol Blood Marrow Transplant 2005;11:773-780 https://doi.org/10.1016/j.bbmt.2005.07.002

Cited by

  1. Anomalous origin of the left coronary artery from the pulmonary artery in children: diagnostic use of multidetector computed tomography vol.46, pp.10, 2015, https://doi.org/10.1007/s00247-016-3635-6
  2. Evaluation of commissural malalignment of aortic-pulmonary sinus using cardiac CT for arterial switch operation: comparison with transthoracic echocardiography vol.47, pp.5, 2017, https://doi.org/10.1007/s00247-017-3786-0
  3. Myocardial delayed-enhancement CT: initial experience in children and young adults vol.47, pp.11, 2015, https://doi.org/10.1007/s00247-017-3889-7
  4. Anomalous Coronary Arteries That Need Intervention: Review of Pre- and Postoperative Imaging Appearances vol.37, pp.3, 2015, https://doi.org/10.1148/rg.2017160124
  5. Contrast-Enhanced High-Pitch Computed Tomography in Pediatric Patients Without Electrocardiography Triggering and Sedation: Comparison of Cardiac Image Quality With Conventional Multidetector Compute vol.41, pp.1, 2015, https://doi.org/10.1097/rct.0000000000000482
  6. Magnetic Particle Imaging (MPI): Experimental Quantification of Vascular Stenosis Using Stationary Stenosis Phantoms vol.12, pp.1, 2015, https://doi.org/10.1371/journal.pone.0168902
  7. Computed tomography pulmonary vascular volume ratio in children and young adults with congenital heart disease: the effect of cardiac phase vol.48, pp.7, 2018, https://doi.org/10.1007/s00247-018-4120-1
  8. Coronary artery anomalies on preoperative cardiac CT in children with tetralogy of Fallot or Fallot type of double outlet right ventricle: comparison with surgical findings vol.34, pp.12, 2018, https://doi.org/10.1007/s10554-018-1422-1
  9. Image Quality and Radiation Dose of High-Pitch Dual-Source Spiral Cardiothoracic Computed Tomography in Young Children with Congenital Heart Disease: Comparison of Non-Electrocardiography Synchronizat vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1031
  10. Myocardial Infarction in Neonates: A Diagnostic and Therapeutic Challenge vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/7203407
  11. User-Friendly Vendor-Specific Guideline for Pediatric Cardiothoracic Computed Tomography Provided by the Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group: Part 1. Imaging T vol.20, pp.2, 2015, https://doi.org/10.3348/kjr.2018.0571
  12. Diagnostic detection with cardiac tomography and resonance of extremely rare coronary anomaly: A case report and review of literature vol.7, pp.5, 2015, https://doi.org/10.12998/wjcc.v7.i5.628
  13. Image quality and radiation dose of two prospective ECG-triggered protocols using 128-slice dual-source CT angiography in infants with congenital heart disease vol.35, pp.5, 2019, https://doi.org/10.1007/s10554-018-01526-0
  14. Comprehensive literature review of anomalies of the coronary arteries vol.34, pp.11, 2015, https://doi.org/10.1111/jocs.14228
  15. Dual-source computed tomography coronary artery imaging in children vol.49, pp.13, 2015, https://doi.org/10.1007/s00247-019-04494-2
  16. Coronary Artery Dilation in Children with Febrile Exanthematous Illness without Criteria for Kawasaki Disease vol.113, pp.6, 2015, https://doi.org/10.5935/abc.20190191
  17. Pediatric cardiac computed tomography angiography: Expert consensus from the Filiale de Cardiologie Pédiatrique et Congénitale (FCPC) and the Société Française d vol.101, pp.6, 2015, https://doi.org/10.1016/j.diii.2020.01.007
  18. Cardiac computed tomography angiography in the paediatric population: Expert consensus from the Filiale de cardiologie pédiatrique et congénitale (FCPC) and the Société fra vol.113, pp.8, 2020, https://doi.org/10.1016/j.acvd.2020.03.016
  19. Non-contrast coronary magnetic resonance angiography: current frontiers and future horizons vol.33, pp.5, 2015, https://doi.org/10.1007/s10334-020-00834-8
  20. Incomplete Kawasaki disease complicated with acute abdomen: A case report vol.8, pp.21, 2020, https://doi.org/10.12998/wjcc.v8.i21.5457
  21. Anomalous Origin of the Coronary Artery from the Pulmonary Artery in Children and Adults: A Pictorial Review of Cardiac Imaging Findings vol.22, pp.9, 2015, https://doi.org/10.3348/kjr.2021.0034
  22. Imaging Findings of Coronary Artery Fistula in Children: A Pictorial Review vol.22, pp.None, 2021, https://doi.org/10.3348/kjr.2021.0336