DOI QR코드

DOI QR Code

Cancer Stem Cells in Primary Liver Cancers: Pathological Concepts and Imaging Findings

  • Joo, Ijin (Department of Radiology, Seoul National University Hospital) ;
  • Kim, Haeryoung (Department of Pathology, Seoul National University Bundang Hospital) ;
  • Lee, Jeong Min (Department of Radiology, Seoul National University Hospital)
  • Received : 2014.06.25
  • Accepted : 2014.09.25
  • Published : 2015.02.01

Abstract

There is accumulating evidence that cancer stem cells (CSCs) play an integral role in the initiation of hepatocarcinogenesis and the maintaining of tumor growth. Liver CSCs derived from hepatic stem/progenitor cells have the potential to differentiate into either hepatocytes or cholangiocytes. Primary liver cancers originating from CSCs constitute a heterogeneous histopathologic spectrum, including hepatocellular carcinoma, combined hepatocellular-cholangiocarcinoma, and intrahepatic cholangiocarcinoma with various radiologic manifestations. In this article, we reviewed the recent concepts of CSCs in the development of primary liver cancers, focusing on their pathological and radiological findings. Awareness of the pathological concepts and imaging findings of primary liver cancers with features of CSCs is critical for accurate diagnosis, prediction of outcome, and appropriate treatment options for patients.

Keywords

References

  1. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer 2012;12:133-143 https://doi.org/10.1038/nrc3184
  2. Hill RP, Perris R. "Destemming" cancer stem cells. J Natl Cancer Inst 2007;99:1435-1440 https://doi.org/10.1093/jnci/djm136
  3. Marquardt JU, Factor VM, Thorgeirsson SS. Epigenetic regulation of cancer stem cells in liver cancer: current concepts and clinical implications. J Hepatol 2010;53:568-577 https://doi.org/10.1016/j.jhep.2010.05.003
  4. Lo RC, Ng IO. Hepatic progenitor cells: their role and functional significance in the new classification of primary liver cancers. Liver Cancer 2013;2:84-92 https://doi.org/10.1159/000343844
  5. Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 2006;25:3818-3822 https://doi.org/10.1038/sj.onc.1209558
  6. Allen RA, Lisa JR. Combined liver cell and bile duct carcinoma. Am J Pathol 1949;25:647-655
  7. Fowler KJ, Sheybani A, Parker RA 3rd, Doherty S, M Brunt E, Chapman WC, et al. Combined hepatocellular and cholangiocarcinoma (biphenotypic) tumors: imaging features and diagnostic accuracy of contrast-enhanced CT and MRI. AJR Am J Roentgenol 2013;201:332-339 https://doi.org/10.2214/AJR.12.9488
  8. Libbrecht L. Hepatic progenitor cells in human liver tumor development. World J Gastroenterol 2006;12:6261-6265 https://doi.org/10.3748/wjg.v12.i39.6261
  9. Bota S, Piscaglia F, Marinelli S, Pecorelli A, Terzi E, Bolondi L. Comparison of international guidelines for noninvasive diagnosis of hepatocellular carcinoma. Liver Cancer 2012;1:190-200 https://doi.org/10.1159/000343833
  10. Song do S, Bae SH. Changes of guidelines diagnosing hepatocellular carcinoma during the last ten-year period. Clin Mol Hepatol 2012;18:258-267 https://doi.org/10.3350/cmh.2012.18.3.258
  11. Oliva MR, Saini S. Liver cancer imaging: role of CT, MRI, US and PET. Cancer Imaging 2004;4 Spec No A:S42-S46 https://doi.org/10.1102/1470-7330.2004.0011
  12. Joo I, Choi BI. New paradigm for management of hepatocellular carcinoma by imaging. Liver Cancer 2012;1:94-109 https://doi.org/10.1159/000342404
  13. Joo I, Lee JM. Imaging bile duct tumors: pathologic concepts, classification, and early tumor detection. Abdom Imaging 2013;38:1334-1350 https://doi.org/10.1007/s00261-013-0027-3
  14. Teefey SA, Hildeboldt CC, Dehdashti F, Siegel BA, Peters MG, Heiken JP, et al. Detection of primary hepatic malignancy in liver transplant candidates: prospective comparison of CT, MR imaging, US, and PET. Radiology 2003;226:533-542 https://doi.org/10.1148/radiol.2262011980
  15. Lee WS, Lee KW, Heo JS, Kim SJ, Choi SH, Kim YI, et al. Comparison of combined hepatocellular and cholangiocarcinoma with hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Surg Today 2006;36:892-897 https://doi.org/10.1007/s00595-006-3276-8
  16. Durnez A, Verslype C, Nevens F, Fevery J, Aerts R, Pirenne J, et al. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology 2006;49:138-151 https://doi.org/10.1111/j.1365-2559.2006.02468.x
  17. Ikeda H, Harada K, Sato Y, Sasaki M, Yoneda N, Kitamura S, et al. Clinicopathologic significance of combined hepatocellular-cholangiocarcinoma with stem cell subtype components with reference to the expression of putative stem cell markers. Am J Clin Pathol 2013;140:329-340 https://doi.org/10.1309/AJCP66AVBANVNTQJ
  18. Fan L, He F, Liu H, Zhu J, Liu Y, Yin Z, et al. CD133: a potential indicator for differentiation and prognosis of human cholangiocarcinoma. BMC Cancer 2011;11:320 https://doi.org/10.1186/1471-2407-11-320
  19. Cardinale V, Carpino G, Reid L, Gaudio E, Alvaro D. Multiple cells of origin in cholangiocarcinoma underlie biological, epidemiological and clinical heterogeneity. World J Gastrointest Oncol 2012;4:94-102 https://doi.org/10.4251/wjgo.v4.i5.94
  20. Komuta M, Govaere O, Vandecaveye V, Akiba J, Van Steenbergen W, Verslype C, et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012;55:1876-1888 https://doi.org/10.1002/hep.25595
  21. Ijichi H, Shirabe K, Taketomi A, Yoshizumi T, Ikegami T, Mano Y, et al. Clinical usefulness of (18) F-fluorodeoxyglucose positron emission tomography/computed tomography for patients with primary liver cancer with special reference to rare histological types, hepatocellular carcinoma with sarcomatous change and combined hepatocellular and cholangiocarcinoma. Hepatol Res 2013;43:481-487 https://doi.org/10.1111/j.1872-034X.2012.01107.x
  22. Ji J, Wang XW. Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 2012;39:461-472 https://doi.org/10.1053/j.seminoncol.2012.05.011
  23. Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest 2013;123:1911-1918 https://doi.org/10.1172/JCI66024
  24. Andersen JB, Loi R, Perra A, Factor VM, Ledda-Columbano GM, Columbano A, et al. Progenitor-derived hepatocellular carcinoma model in the rat. Hepatology 2010;51:1401-1409 https://doi.org/10.1002/hep.23488
  25. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2008;2:333-344 https://doi.org/10.1016/j.stem.2008.02.009
  26. Yang XR, Xu Y, Yu B, Zhou J, Qiu SJ, Shi GM, et al. High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 2010;59:953-962 https://doi.org/10.1136/gut.2008.176271
  27. Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 2006;44:240-251
  28. Theise ND, Nakashima O, Park YN, Nakanuma Y. Combined hepatocellular-cholangiocarcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO classification of tumours of the digestive system, 4th ed. Lyon: IARC, 2010:225-227
  29. Lin G, Toh CH, Wu RC, Ko SF, Ng SH, Chou WC, et al. Combined hepatocellular cholangiocarcinoma: prognostic factors investigated by computed tomography/magnetic resonance imaging. Int J Clin Pract 2008;62:1199-1205
  30. Goodman ZD, Ishak KG, Langloss JM, Sesterhenn IA, Rabin L. Combined hepatocellular-cholangiocarcinoma. A histologic and immunohistochemical study. Cancer 1985;55:124-135 https://doi.org/10.1002/1097-0142(19850101)55:1<124::AID-CNCR2820550120>3.0.CO;2-Z
  31. Kim H, Park C, Han KH, Choi J, Kim YB, Kim JK, et al. Primary liver carcinoma of intermediate (hepatocyte-cholangiocyte) phenotype. J Hepatol 2004;40:298-304 https://doi.org/10.1016/j.jhep.2003.10.023
  32. Terada T. Combined hepatocellular-cholangiocarcinoma with stem cell features, ductal plate malformation subtype: a case report and proposal of a new subtype. Int J Clin Exp Pathol 2013;6:737-748
  33. Theise ND, Yao JL, Harada K, Hytiroglou P, Portmann B, Thung SN, et al. Hepatic 'stem cell' malignancies in adults: four cases. Histopathology 2003;43:263-271 https://doi.org/10.1046/j.1365-2559.2003.01707.x
  34. Komuta M, Spee B, Vander Borght S, De Vos R, Verslype C, Aerts R, et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 2008;47:1544-1556 https://doi.org/10.1002/hep.22238
  35. Shiota K, Taguchi J, Nakashima O, Nakashima M, Kojiro M. Clinicopathologic study on cholangiolocellular carcinoma. Oncol Rep 2001;8:263-268
  36. Shetty AS, Fowler KJ, Brunt EM, Agarwal S, Narra VR, Menias CO. Combined hepatocellular-cholangiocarcinoma: what the radiologist needs to know about biphenotypic liver carcinoma. Abdom Imaging 2014;39:310-322 https://doi.org/10.1007/s00261-013-0069-6
  37. Lee JH, Lee JM, Kim SJ, Baek JH, Yun SH, Kim KW, et al. Enhancement patterns of hepatocellular carcinomas on multiphasicmultidetector row CT: comparison with pathological differentiation. Br J Radiol 2012;85:e573-e583 https://doi.org/10.1259/bjr/86767895
  38. Yoon SH, Lee JM, So YH, Hong SH, Kim SJ, Han JK, et al. Multiphasic MDCT enhancement pattern of hepatocellular carcinoma smaller than 3 cm in diameter: tumor size and cellular differentiation. AJR Am J Roentgenol 2009;193:W482-W489 https://doi.org/10.2214/AJR.08.1818
  39. Kim KE, Park MS, Bentley-Hibbert S, Baek SE, Kim YC, Kim MJ, et al. Hepatocellular carcinoma: clinical and radiological findings in patients with chronic B viral hepatitis and chronic C viral hepatitis. Abdom Imaging 2012;37:591-594 https://doi.org/10.1007/s00261-011-9799-5
  40. Kim SA, Lee JM, Lee KB, Kim SH, Yoon SH, Han JK, et al. Intrahepatic mass-forming cholangiocarcinomas: enhancement patterns at multiphasic CT, with special emphasis on arterial enhancement pattern--correlation with clinicopathologic findings. Radiology 2011;260:148-157 https://doi.org/10.1148/radiol.11101777
  41. Nishie A, Yoshimitsu K, Asayama Y, Irie H, Aibe H, Tajima T, et al. Detection of combined hepatocellular and cholangiocarcinomas on enhanced CT: comparison with histologic findings. AJR Am J Roentgenol 2005;184:1157-1162 https://doi.org/10.2214/ajr.184.4.01841157
  42. Fukukura Y, Taguchi J, Nakashima O, Wada Y, Kojiro M. Combined hepatocellular and cholangiocarcinoma: correlation between CT findings and clinicopathological features. J Comput Assist Tomogr 1997;21:52-58 https://doi.org/10.1097/00004728-199701000-00011
  43. de Campos RO, Semelka RC, Azevedo RM, Ramalho M, Heredia V, Armao DM, et al. Combined hepatocellular carcinoma-cholangiocarcinoma: report of MR appearance in eleven patients. J Magn Reson Imaging 2012;36:1139-1147 https://doi.org/10.1002/jmri.23754
  44. Hwang J, Kim YK, Park MJ, Lee MH, Kim SH, Lee WJ, et al. Differentiating combined hepatocellular and cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma using gadoxetic acid-enhanced MRI. J Magn Reson Imaging 2012;36:881-889 https://doi.org/10.1002/jmri.23728
  45. Yin X, Zhang BH, Qiu SJ, Ren ZG, Zhou J, Chen XH, et al. Combined hepatocellular carcinoma and cholangiocarcinoma: clinical features, treatment modalities, and prognosis. Ann Surg Oncol 2012;19:2869-2876 https://doi.org/10.1245/s10434-012-2328-0
  46. Koh KC, Lee H, Choi MS, Lee JH, Paik SW, Yoo BC, et al. Clinicopathologic features and prognosis of combined hepatocellular cholangiocarcinoma. Am J Surg 2005;189:120-125 https://doi.org/10.1016/j.amjsurg.2004.03.018
  47. Yano Y, Yamamoto J, Kosuge T, Sakamoto Y, Yamasaki S, Shimada K, et al. Combined hepatocellular and cholangiocarcinoma: a clinicopathologic study of 26 resected cases. Jpn J Clin Oncol 2003;33:283-287 https://doi.org/10.1093/jjco/hyg056
  48. Nagaoka S, Itano S, Ishibashi M, Torimura T, Baba K, Akiyoshi J, et al. Value of fusing PET plus CT images in hepatocellular carcinoma and combined hepatocellular and cholangiocarcinoma patients with extrahepatic metastases: preliminary findings. Liver Int 2006;26:781-788 https://doi.org/10.1111/j.1478-3231.2006.01296.x
  49. Motosugi U, Ichikawa T, Nakajima H, Araki T, Matsuda M, Suzuki T, et al. Cholangiolocellular carcinoma of the liver: imaging findings. J Comput Assist Tomogr 2009;33:682-688 https://doi.org/10.1097/RCT.0b013e318195400c
  50. Asayama Y, Tajima T, Okamoto D, Nishie A, Ishigami K, Ushijima Y, et al. Imaging of cholangiolocellular carcinoma of the liver. Eur J Radiol 2010;75:e120-e125 https://doi.org/10.1016/j.ejrad.2009.09.010
  51. Fukukura Y, Hamanoue M, Fujiyoshi F, Sasaki M, Haruta K, Inoue H, et al. Cholangiolocellular carcinoma of the liver: CT and MR findings. J Comput Assist Tomogr 2000;24:809-812 https://doi.org/10.1097/00004728-200009000-00025
  52. Sasaki M, Sato H, Kakuda Y, Sato Y, Choi JH, Nakanuma Y. Clinicopathological significance of 'subtypes with stem-cell feature' in combined hepatocellular-cholangiocarcinoma. Liver Int 2014 Apr 8 [Epub]. http://dx.doi.org/10.1111/liv.12563
  53. Jarnagin WR, Weber S, Tickoo SK, Koea JB, Obiekwe S, Fong Y, et al. Combined hepatocellular and cholangiocarcinoma: demographic, clinical, and prognostic factors. Cancer 2002;94:2040-2046 https://doi.org/10.1002/cncr.10392
  54. Tang D, Nagano H, Nakamura M, Wada H, Marubashi S, Miyamoto A, et al. Clinical and pathological features of Allen's type C classification of resected combined hepatocellular and cholangiocarcinoma: a comparative study with hepatocellular carcinoma and cholangiocellular carcinoma. J Gastrointest Surg 2006;10:987-998 https://doi.org/10.1016/j.gassur.2006.01.018
  55. Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology 2005;128:620-626 https://doi.org/10.1053/j.gastro.2004.12.048
  56. Kim SJ, Lee JM, Han JK, Kim KH, Lee JY, Choi BI. Peripheral mass-forming cholangiocarcinoma in cirrhotic liver. AJR Am J Roentgenol 2007;189:1428-1434 https://doi.org/10.2214/AJR.07.2484
  57. Roncalli M, Park YN, Di Tommaso L. Histopathological classification of hepatocellular carcinoma. Dig Liver Dis 2010;42 Suppl 3:S228-S234 https://doi.org/10.1016/S1590-8658(10)60510-5
  58. Kim H, Choi GH, Na DC, Ahn EY, Kim GI, Lee JE, et al. Human hepatocellular carcinomas with "Stemness"-related marker expression: keratin 19 expression and a poor prognosis. Hepatology 2011;54:1707-1717 https://doi.org/10.1002/hep.24559
  59. Govaere O, Komuta M, Berkers J, Spee B, Janssen C, de Luca F, et al. Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 2014;63:674-685 https://doi.org/10.1136/gutjnl-2012-304351
  60. Tsuchiya K, Komuta M, Yasui Y, Tamaki N, Hosokawa T, Ueda K, et al. Expression of keratin 19 is related to high recurrence of hepatocellular carcinoma after radiofrequency ablation. Oncology 2011;80:278-288 https://doi.org/10.1159/000328448
  61. Jeong HT, Kim MJ, Kim YE, Park YN, Choi GH, Choi JS. MRI features of hepatocellular carcinoma expressing progenitor cell markers. Liver Int 2012;32:430-440
  62. Kojiro M. 'Nodule-in-nodule' appearance in hepatocellular carcinoma: its significance as a morphologic marker of dedifferentiation. Intervirology 2004;47:179-183 https://doi.org/10.1159/000078470
  63. Choi JY, Kim MJ, Park YN, Lee JM, Yoo SK, Rha SY, et al. Gadoxetate disodium-enhanced hepatobiliary phase MRI of hepatocellular carcinoma: correlation with histological characteristics. AJR Am J Roentgenol 2011;197:399-405 https://doi.org/10.2214/AJR.10.5439
  64. Kitao A, Matsui O, Yoneda N, Kozaka K, Kobayashi S, Koda W, et al. Hypervascular hepatocellular carcinoma: correlation between biologic features and signal intensity on gadoxetic acid-enhanced MR images. Radiology 2012;265:780-789 https://doi.org/10.1148/radiol.12120226
  65. Choi JW, Lee JM, Kim SJ, Yoon JH, Baek JH, Han JK, et al. Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced MR Images and their value as an imaging biomarker. Radiology 2013;267:776-786 https://doi.org/10.1148/radiol.13120775
  66. Ma YC, Yang JY, Yan LN. Relevant markers of cancer stem cells indicate a poor prognosis in hepatocellular carcinoma patients: a meta-analysis. Eur J Gastroenterol Hepatol 2013;25:1007-1016 https://doi.org/10.1097/MEG.0b013e32836019d8
  67. Yamashita T, Kitao A, Matsui O, Hayashi T, Nio K, Kondo M, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology 2014;60:1674-1685 https://doi.org/10.1002/hep.27093
  68. Kurogi M, Nakashima O, Miyaaki H, Fujimoto M, Kojiro M. Clinicopathological study of scirrhous hepatocellular carcinoma. J Gastroenterol Hepatol 2006;21:1470-1477
  69. Matsuura S, Aishima S, Taguchi K, Asayama Y, Terashi T, Honda H, et al. 'Scirrhous' type hepatocellular carcinomas: a special reference to expression of cytokeratin 7 and hepatocyte paraffin 1. Histopathology 2005;47:382-390 https://doi.org/10.1111/j.1365-2559.2005.02230.x
  70. Okamura N, Yoshida M, Shibuya A, Sugiura H, Okayasu I, Ohbu M. Cellular and stromal characteristics in the scirrhous hepatocellular carcinoma: comparison with hepatocellular carcinomas and intrahepatic cholangiocarcinomas. Pathol Int 2005;55:724-731 https://doi.org/10.1111/j.1440-1827.2005.01891.x
  71. Seok JY, Na DC, Woo HG, Roncalli M, Kwon SM, Yoo JE, et al. A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal transition. Hepatology 2012;55:1776-1786 https://doi.org/10.1002/hep.25570
  72. Fujii T, Zen Y, Harada K, Niwa H, Masuda S, Kaizaki Y, et al. Participation of liver cancer stem/progenitor cells in tumorigenesis of scirrhous hepatocellular carcinoma--human and cell culture study. Hum Pathol 2008;39:1185-1196 https://doi.org/10.1016/j.humpath.2007.12.010
  73. Park MJ, Kim YK, Park HJ, Hwang J, Lee WJ. Scirrhous hepatocellular carcinoma on gadoxetic acid-enhanced magnetic resonance imaging and diffusion-weighted imaging: emphasis on the differentiation of intrahepatic cholangiocarcinoma. J Comput Assist Tomogr 2013;37:872-881 https://doi.org/10.1097/RCT.0b013e31829d44c1
  74. Jeon TY, Kim SH, Lee WJ, Lim HK. The value of gadobenate dimeglumine-enhanced hepatobiliary-phase MR imaging for the differentiation of scirrhous hepatocellular carcinoma and cholangiocarcinoma with or without hepatocellular carcinoma. Abdom Imaging 2010;35:337-345 https://doi.org/10.1007/s00261-009-9509-8
  75. Kang Y, Lee JM, Kim SH, Han JK, Choi BI. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 2012;264:751-760 https://doi.org/10.1148/radiol.12112308
  76. Nomoto K, Tsuneyama K, Cheng C, Takahashi H, Hori R, Murai Y, et al. Intrahepatic cholangiocarcinoma arising in cirrhotic liver frequently expressed p63-positive basal/stem-cell phenotype. Pathol Res Pract 2006;202:71-76 https://doi.org/10.1016/j.prp.2005.10.011
  77. Xu J, Sasaki M, Harada K, Sato Y, Ikeda H, Kim JH, et al. Intrahepatic cholangiocarcinoma arising in chronic advanced liver disease and the cholangiocarcinomatous component of hepatocellular cholangiocarcinoma share common phenotypes and cholangiocarcinogenesis. Histopathology 2011;59:1090-1099 https://doi.org/10.1111/j.1365-2559.2011.04058.x
  78. Vilana R, Forner A, Bianchi L, Garcia-Criado A, Rimola J, de Lope CR, et al. Intrahepatic peripheral cholangiocarcinoma in cirrhosis patients may display a vascular pattern similar to hepatocellular carcinoma on contrast-enhanced ultrasound. Hepatology 2010;51:2020-2029 https://doi.org/10.1002/hep.23600

Cited by

  1. Noninvasive Diagnosis of Hepatocellular Carcinoma: Elaboration on Korean Liver Cancer Study Group-National Cancer Center Korea Practice Guidelines Compared with Other Guidelines and Remaining Issues vol.17, pp.1, 2016, https://doi.org/10.3348/kjr.2016.17.1.7
  2. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds vol.17, pp.6, 2015, https://doi.org/10.3390/ijms17060893
  3. Diagnostic accuracy of liver imaging reporting and data system (LI‐RADS) v2014 for intrahepatic mass‐forming cholangiocarcinomas in patients with chronic liver disease on gadoxetic acid vol.44, pp.5, 2015, https://doi.org/10.1002/jmri.25287
  4. DLL4 overexpression increases gastric cancer stem/progenitor cell self‐renewal ability and correlates with poor clinical outcome via Notch‐1 signaling pathway activation vol.6, pp.1, 2017, https://doi.org/10.1002/cam4.962
  5. Curative Resection of Single Primary Hepatic Malignancy: Liver Imaging Reporting and Data System Category LR-M Portends a Worse Prognosis vol.209, pp.3, 2015, https://doi.org/10.2214/ajr.16.17478
  6. Biliary tract cancer stem cells - translational options and challenges vol.23, pp.14, 2015, https://doi.org/10.3748/wjg.v23.i14.2470
  7. Liver imaging reporting and data system v2014 categorization of hepatocellular carcinoma on gadoxetic acid‐enhanced MRI: Comparison with multiphasic multidetector computed tomography vol.45, pp.3, 2015, https://doi.org/10.1002/jmri.25406
  8. Added value of ancillary imaging features for differentiating scirrhous hepatocellular carcinoma from intrahepatic cholangiocarcinoma on gadoxetic acid-enhanced MR imaging vol.28, pp.6, 2015, https://doi.org/10.1007/s00330-017-5196-y
  9. Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges vol.288, pp.1, 2015, https://doi.org/10.1148/radiol.2018171187
  10. Intrahepatic Mass-Forming Cholangiocarcinoma: Relationship Between Computed Tomography Characteristics and Histological Subtypes vol.42, pp.3, 2018, https://doi.org/10.1097/rct.0000000000000695
  11. State-of-the-art MR Imaging of Uncommon Hepatocellular Tumours: Fibrolamellar Hepatocellular Carcinoma and Combined Hepatocellularcholangiocarcinoma vol.15, pp.3, 2019, https://doi.org/10.2174/1573405614666180927113622
  12. Resected case of co-existing combined hepatocellular-cholangiocarcinoma and cholangiolocellular carcinoma in the same segment of normal liver vol.60, pp.6, 2015, https://doi.org/10.2957/kanzo.60.179
  13. Atypical Appearance of Hepatocellular Carcinoma and Its Mimickers: How to Solve Challenging Cases Using Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging vol.20, pp.7, 2015, https://doi.org/10.3348/kjr.2018.0636
  14. Noninvasive prediction of HCC with progenitor phenotype based on gadoxetic acid-enhanced MRI vol.30, pp.2, 2015, https://doi.org/10.1007/s00330-019-06414-2
  15. Pearls and pitfalls in magnetic resonance imaging of hepatocellular carcinoma vol.26, pp.17, 2020, https://doi.org/10.3748/wjg.v26.i17.2012
  16. Major and ancillary features according to LI-RADS in the assessment of combined hepatocellular-cholangiocarcinoma vol.54, pp.2, 2020, https://doi.org/10.2478/raon-2020-0029
  17. LI-RADS M (LR-M) criteria and reporting algorithm of v2018: diagnostic values in the assessment of primary liver cancers on gadoxetic acid-enhanced MRI vol.45, pp.8, 2020, https://doi.org/10.1007/s00261-020-02545-z
  18. MR Features Based on LI-RADS Ver. 2018 Correlated with Cytokeratin 19 Expression in Combined Hepatocellular Carcinoma-Cholangiocarcinoma vol.8, pp.None, 2015, https://doi.org/10.2147/jhc.s325686
  19. MRI-Radiomics Prediction for Cytokeratin 19-Positive Hepatocellular Carcinoma: A Multicenter Study vol.11, pp.None, 2015, https://doi.org/10.3389/fonc.2021.672126
  20. Evaluation of Primary Liver Cancers Using Hepatocyte‐Specific Contrast‐Enhanced MRI: Pitfalls and Potential Tips vol.53, pp.3, 2015, https://doi.org/10.1002/jmri.27213
  21. Imaging of Intrahepatic Cholangiocarcinoma vol.42, pp.4, 2021, https://doi.org/10.1053/j.sult.2021.04.001
  22. Combined hepatocellular carcinoma-cholangiocarcinoma: MRI features correlated with tumor biomarkers and prognosis vol.32, pp.1, 2022, https://doi.org/10.1007/s00330-021-08188-y