DOI QR코드

DOI QR Code

Integrated Whole Body MR/PET: Where Are We?

  • Yoo, Hye Jin (Department of Radiology, Seoul National University Hospital) ;
  • Lee, Jae Sung (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Lee, Jeong Min (Department of Radiology, Seoul National University Hospital)
  • Received : 2014.08.06
  • Accepted : 2014.09.09
  • Published : 2015.02.01

Abstract

Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed.

Keywords

Acknowledgement

Grant : 뇌질환 임상연구를 위한 7T MR-Compatible PET System 개발

References

  1. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 2009;36 Suppl 1:S113-S120 https://doi.org/10.1007/s00259-008-0951-6
  2. Balyasnikova S, Lofgren J, de Nijs R, Zamogilnaya Y, Hojgaard L, Fischer BM. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging 2012;2:458-474
  3. Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients--a hypothesis-generating exploratory study. Radiology 2013;269:857-869 https://doi.org/10.1148/radiol.13131306
  4. Catana C, Guimaraes AR, Rosen BR. PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med 2013;54:815-824 https://doi.org/10.2967/jnumed.112.112771
  5. Gaertner FC, Furst S, Schwaiger M. PET/MR: a paradigm shift. Cancer Imaging 2013;13:36-52
  6. Herzog H. PET/MRI: challenges, solutions and perspectives. Z Med Phys 2012;22:281-298 https://doi.org/10.1016/j.zemedi.2012.07.003
  7. Jadvar H, Colletti PM. Competitive advantage of PET/MRI. Eur J Radiol 2014;83:84-94 https://doi.org/10.1016/j.ejrad.2013.05.028
  8. Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol 2008;(185 Pt 1):109-132
  9. von Schulthess GK, Schlemmer HP. A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 2009;36 Suppl 1:S3-S9 https://doi.org/10.1007/s00259-008-0940-9
  10. Wehrl HF, Sauter AW, Judenhofer MS, Pichler BJ. Combined PET/MR imaging--technology and applications. Technol Cancer Res Treat 2010;9:5-20 https://doi.org/10.1177/153303461000900102
  11. Zaidi H, Montandon ML, Alavi A. The clinical role of fusion imaging using PET, CT, and MR imaging. Magn Reson Imaging Clin N Am 2010;18:133-149 https://doi.org/10.1016/j.mric.2009.09.010
  12. Al-Nabhani KZ, Syed R, Michopoulou S, Alkalbani J, Afaq A, Panagiotidis E, et al. Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice. J Nucl Med 2014;55:88-94 https://doi.org/10.2967/jnumed.113.123547
  13. Andersen FL, Ladefoged CN, Beyer T, Keller SH, Hansen AE, Hojgaard L, et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 2014;84:206-216 https://doi.org/10.1016/j.neuroimage.2013.08.042
  14. Bailey DL, Barthel H, Beuthin-Baumann B, Beyer T, Bisdas S, Boellaard R, et al. Combined PET/MR: Where are we now? Summary report of the second international workshop on PET/MR imaging April 8-12, 2013, Tubingen, Germany. Mol Imaging Biol 2014;16:295-310
  15. Boss A, Stegger L, Bisdas S, Kolb A, Schwenzer N, Pfister M, et al. Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol 2011;21:1439-1446 https://doi.org/10.1007/s00330-011-2072-z
  16. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 2012;53:1244-1252 https://doi.org/10.2967/jnumed.112.109306
  17. Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med 2012;53:928-938 https://doi.org/10.2967/jnumed.112.105338
  18. Czernin J, Ta L, Herrmann K. Does PET/MR Imaging Improve Cancer Assessments? Literature Evidence from More Than 900 Patients. J Nucl Med 2014;55(Supplement 2):59S-62S https://doi.org/10.2967/jnumed.114.141838
  19. Disselhorst JA, Bezrukov I, Kolb A, Parl C, Pichler BJ. Principles of PET/MR Imaging. J Nucl Med 2014;55(Supplement 2):2S-10S https://doi.org/10.2967/jnumed.113.129098
  20. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012;53:845-855 https://doi.org/10.2967/jnumed.111.098608
  21. Quick HH, von Gall C, Zeilinger M, Wiesmuller M, Braun H, Ziegler S, et al. Integrated whole-body PET/MR hybrid imaging: clinical experience. Invest Radiol 2013;48:280-289 https://doi.org/10.1097/RLI.0b013e3182845a08
  22. von Schulthess GK, Veit-Haibach P. Workflow Considerations in PET/MR Imaging. J Nucl Med 2014;55(Supplement 2):19S-24S https://doi.org/10.2967/jnumed.113.129239
  23. Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013;267:26-44 https://doi.org/10.1148/radiol.13121038
  24. Vaska P, Cao T. The state of instrumentation for combined positron emission tomography and magnetic resonance imaging. Semin Nucl Med 2013;43:11-18 https://doi.org/10.1053/j.semnuclmed.2012.08.003
  25. von Schulthess GK, Kuhn FP, Kaufmann P, Veit-Haibach P. Clinical positron emission tomography/magnetic resonance imaging applications. Semin Nucl Med 2013;43:3-10 https://doi.org/10.1053/j.semnuclmed.2012.08.005
  26. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med 1998;25:774-787 https://doi.org/10.1007/s002590050282
  27. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44:291-315
  28. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol 1996;41:153-176 https://doi.org/10.1088/0031-9155/41/1/012
  29. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29:922-927 https://doi.org/10.1007/s00259-002-0796-3
  30. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003;33:166-179 https://doi.org/10.1053/snuc.2003.127307
  31. Townsend DW. Dual-modality imaging: combining anatomy and function. J Nucl Med 2008;49:938-955 https://doi.org/10.2967/jnumed.108.051276
  32. Delso G, Martinez-Moller A, Bundschuh RA, Ladebeck R, Candidus Y, Faul D, et al. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol 2010;55:4361-4374 https://doi.org/10.1088/0031-9155/55/15/011
  33. Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited MR field of view in MR/PET attenuation correction. Med Phys 2010;37:2804-2812 https://doi.org/10.1118/1.3431576
  34. MacDonald LR, Kohlmyer S, Liu C, Lewellen TK, Kinahan PE. Effects of MR surface coils on PET quantification. Med Phys 2011;38:2948-2956 https://doi.org/10.1118/1.3583697
  35. Montandon ML, Zaidi H. Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage 2005;25:278-286 https://doi.org/10.1016/j.neuroimage.2004.11.021
  36. Kim JS, Lee JS, Park MH, Kim KM, Oh SH, Cheon GJ, et al. Feasibility of template-guided attenuation correction in cat brain PET imaging. Mol Imaging Biol 2010;12:250-258 https://doi.org/10.1007/s11307-009-0277-1
  37. Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 2012;53:796-804 https://doi.org/10.2967/jnumed.111.092577
  38. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 2008;49:1875-1883 https://doi.org/10.2967/jnumed.107.049353
  39. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. J Nucl Med 2011;52:1392-1399 https://doi.org/10.2967/jnumed.110.078949
  40. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009;50:520-526 https://doi.org/10.2967/jnumed.108.054726
  41. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 2010;51:812-818 https://doi.org/10.2967/jnumed.109.065425
  42. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Bornert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 2011;38:138-152 https://doi.org/10.1007/s00259-010-1603-1
  43. Eiber M, Martinez-Moller A, Souvatzoglou M, Holzapfel K, Pickhard A, Loffelbein D, et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 2011;38:1691-1701 https://doi.org/10.1007/s00259-011-1842-9
  44. Kim JH, Lee JS, Song IC, Lee DS. Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med 2012;53:1878-1882 https://doi.org/10.2967/jnumed.112.104109
  45. Eiber M, Takei T, Souvatzoglou M, Mayerhoefer ME, Furst S, Gaertner FC, et al. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 2014;55:191-197 https://doi.org/10.2967/jnumed.113.123646
  46. Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 2010;51:1431-1438 https://doi.org/10.2967/jnumed.109.069112
  47. Aitken AP, Giese D, Tsoumpas C, Schleyer P, Kozerke S, Prieto C, et al. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring. Med Phys 2014;41:012302 https://doi.org/10.1118/1.4837315
  48. Dickson JC, O'Meara C, Barnes A. A comparison of CT-and MR-based attenuation correction in neurological PET. Eur J Nucl Med Mol Imaging 2014;41:1176-1189 https://doi.org/10.1007/s00259-013-2652-z
  49. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging 1999;18:393-403 https://doi.org/10.1109/42.774167
  50. Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol 2012;57:885-899 https://doi.org/10.1088/0031-9155/57/4/885
  51. Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 2011;56:155-168 https://doi.org/10.1088/0031-9155/56/1/010
  52. Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S. Challenges and current methods for attenuation correction in PET/MR. MAGMA 2013;26:81-98 https://doi.org/10.1007/s10334-012-0334-7
  53. Weber WA. PET/MR Imaging: A Critical Appraisal. J Nucl Med 2014;55(Supplement 2):56S-58S https://doi.org/10.2967/jnumed.113.129270
  54. Rauscher I, Eiber M, Souvatzoglou M, Schwaiger M, Beer AJ. PET/MR in Oncology: Non-18F-FDG Tracers for Routine Applications. J Nucl Med 2014;55(Supplement 2):25S-31S https://doi.org/10.2967/jnumed.113.129536
  55. Liu X, Yetik IS. Automated prostate cancer localization without the need for peripheral zone extraction using multiparametric MRI. Med Phys 2011;38:2986-2994 https://doi.org/10.1118/1.3589134
  56. Wehrl HF, Wiehr S, Divine MR, Gatidis S, Gullberg GT, Maier FC, et al. Preclinical and Translational PET/MR Imaging. J Nucl Med 2014;55(Supplement 2):11S-18S https://doi.org/10.2967/jnumed.113.129221
  57. Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA. Review of functional/anatomical imaging in oncology. Nucl Med Commun 2012;33:349-361 https://doi.org/10.1097/MNM.0b013e32834ec8a5
  58. Filss CP, Galldiks N, Stoffels G, Sabel M, Wittsack HJ, Turowski B, et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 2014;55:540-545 https://doi.org/10.2967/jnumed.113.129007
  59. Kuhn FP, Hullner M, Mader CE, Kastrinidis N, Huber GF, von Schulthess GK, et al. Contrast-enhanced PET/MR imaging versus contrast-enhanced PET/CT in head and neck cancer: how much MR information is needed? J Nucl Med 2014;55:551-558 https://doi.org/10.2967/jnumed.113.125443
  60. Platzek I, Beuthien-Baumann B, Schneider M, Gudziol V, Kitzler HH, Maus J, et al. FDG PET/MR for lymph node staging in head and neck cancer. Eur J Radiol 2014;83:1163-1168 https://doi.org/10.1016/j.ejrad.2014.03.023
  61. Platzek I, Beuthien-Baumann B, Schneider M, Gudziol V, Langner J, Schramm G, et al. PET/MRI in head and neck cancer: initial experience. Eur J Nucl Med Mol Imaging 2013;40:6-11 https://doi.org/10.1007/s00259-012-2248-z
  62. Donati OF, Hany TF, Reiner CS, von Schulthess GK, Marincek B, Seifert B, et al. Value of retrospective fusion of PET and MR images in detection of hepatic metastases: comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced MRI. J Nucl Med 2010;51:692-699 https://doi.org/10.2967/jnumed.109.068510
  63. Sun H, Xin J, Zhang S, Guo Q, Lu Y, Zhai W, et al. Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging 2014;41:898-905 https://doi.org/10.1007/s00259-013-2668-4
  64. Souvatzoglou M, Eiber M, Takei T, Furst S, Maurer T, Gaertner F, et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 2013;40:1486-1499 https://doi.org/10.1007/s00259-013-2467-y
  65. Gaertner FC, Beer AJ, Souvatzoglou M, Eiber M, Furst S, Ziegler SI, et al. Evaluation of feasibility and image quality of 68Ga-DOTATOC positron emission tomography/magnetic resonance in comparison with positron emission tomography/computed tomography in patients with neuroendocrine tumors. Invest Radiol 2013;48:263-272 https://doi.org/10.1097/RLI.0b013e31828234d0
  66. Somer EJ, Marsden PK, Benatar NA, Goodey J, O'Doherty MJ, Smith MA. PET-MR image fusion in soft tissue sarcoma: accuracy, reliability and practicality of interactive point-based and automated mutual information techniques. Eur J Nucl Med Mol Imaging 2003;30:54-62 https://doi.org/10.1007/s00259-002-0994-z
  67. Park H, Wood D, Hussain H, Meyer CR, Shah RB, Johnson TD, et al. Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 2012;53:546-551 https://doi.org/10.2967/jnumed.111.091421
  68. Jambor I, Borra R, Kemppainen J, Lepomaki V, Parkkola R, Dean K, et al. Improved detection of localized prostate cancer using co-registered MRI and 11C-acetate PET/CT. Eur J Radiol 2012;81:2966-2972 https://doi.org/10.1016/j.ejrad.2011.12.043
  69. Takei T, Souvatzoglou M, Beer AJ, Drzezga A, Ziegler S, Rummeny EJ, et al. A case of multimodality multiparametric 11C-choline PET/MR for biopsy targeting in prior biopsy-negative primary prostate cancer. Clin Nucl Med 2012;37:918-919 https://doi.org/10.1097/RLU.0b013e31825b23a6
  70. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging 2014;41:887-897 https://doi.org/10.1007/s00259-013-2660-z
  71. Schuler MK, Richter S, Beuthien-Baumann B, Platzek I, Kotzerke J, van den Hoff J, et al. PET/MRI Imaging in High-Risk Sarcoma: First Findings and Solving Clinical Problems. Case Rep Oncol Med 2013;2013:793927
  72. Gaeta CM, Vercher-Conejero JL, Sher AC, Kohan A, Rubbert C, Avril N. Recurrent and metastatic breast cancer PET, PET/CT, PET/MRI: FDG and new biomarkers. Q J Nucl Med Mol Imaging 2013;57:352-366
  73. Kubiessa K, Purz S, Gawlitza M, Kuhn A, Fuchs J, Steinhoff KG, et al. Initial clinical results of simultaneous 18F-FDG PET/MRI in comparison to 18F-FDG PET/CT in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 2014;41:639-648 https://doi.org/10.1007/s00259-013-2633-2
  74. Collins CD. PET/CT in oncology: for which tumours is it the reference standard? Cancer Imaging 2007;7 Spec No A:S77-S87
  75. Kohan AA, Kolthammer JA, Vercher-Conejero JL, Rubbert C, Partovi S, Jones R, et al. N staging of lung cancer patients with PET/MRI using a three-segment model attenuation correction algorithm: initial experience. Eur Radiol 2013;23:3161-3169 https://doi.org/10.1007/s00330-013-2914-y
  76. Thorek DL, Ulmert D, Diop NF, Lupu ME, Doran MG, Huang R, et al. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun 2014;5:3097 https://doi.org/10.1038/ncomms4097
  77. Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003;290:3199-3206 https://doi.org/10.1001/jama.290.24.3199
  78. Schmidt GP, Schoenberg SO, Schmid R, Stahl R, Tiling R, Becker CR, et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 2007;17:939-949 https://doi.org/10.1007/s00330-006-0361-8
  79. Ohno Y, Koyama H, Onishi Y, Takenaka D, Nogami M, Yoshikawa T, et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment--utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 2008;248:643-654 https://doi.org/10.1148/radiol.2482072039
  80. Coenegrachts K, De Geeter F, ter Beek L, Walgraeve N, Bipat S, Stoker J, et al. Comparison of MRI (including SS SE-EPI and SPIO-enhanced MRI) and FDG-PET/CT for the detection of colorectal liver metastases. Eur Radiol 2009;19:370-379 https://doi.org/10.1007/s00330-008-1163-y
  81. Takenaka D, Ohno Y, Matsumoto K, Aoyama N, Onishi Y, Koyama H, et al. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 2009;30:298-308 https://doi.org/10.1002/jmri.21858
  82. Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 2010;257:674-684 https://doi.org/10.1148/radiol.10100729
  83. Yong TW, Yuan ZZ, Jun Z, Lin Z, He WZ, Juanqi Z. Sensitivity of PET/MR images in liver metastases from colorectal carcinoma. Hell J Nucl Med 2011;14:264-268
  84. Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN. Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 2007;244:557-565 https://doi.org/10.1148/radiol.2442060898
  85. Yoon SH, Goo JM, Lee SM, Park CM, Seo HJ, Cheon GJ. Positron emission tomography/magnetic resonance imaging evaluation of lung cancer: current status and future prospects. J Thorac Imaging 2014;29:4-16 https://doi.org/10.1097/RTI.0000000000000062
  86. Chandarana H, Heacock L, Rakheja R, DeMello LR, Bonavita J, Block TK, et al. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology 2013;268:874-881 https://doi.org/10.1148/radiol.13130620
  87. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 2009;50 Suppl 1:122S-150S https://doi.org/10.2967/jnumed.108.057307
  88. Heijmen L, Verstappen MC, Ter Voert EE, Punt CJ, Oyen WJ, de Geus-Oei LF, et al. Tumour response prediction by diffusion-weighted MR imaging: ready for clinical use? Crit Rev Oncol Hematol 2012;83:194-207 https://doi.org/10.1016/j.critrevonc.2011.12.008
  89. Afaq A, Andreou A, Koh DM. Diffusion-weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging 2010;10 Spec no A:S179-S188 https://doi.org/10.1102/1470-7330.2010.9032
  90. Platzek I, Beuthien-Baumann B, Langner J, Popp M, Schramm G, Ordemann R, et al. PET/MR for therapy response evaluation in malignant lymphoma: initial experience. MAGMA 2013;26:49-55 https://doi.org/10.1007/s10334-012-0342-7
  91. Purz S, Sabri O, Viehweger A, Barthel H, Kluge R, Sorge I, et al. Potential Pediatric Applications of PET/MR. J Nucl Med 2014;55(Supplement 2):32S-39S https://doi.org/10.2967/jnumed.113.129304
  92. Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 2013;43:860-875 https://doi.org/10.1007/s00247-012-2570-4
  93. Punwani S, Taylor SA, Bainbridge A, Prakash V, Bandula S, De Vita E, et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology 2010;255:182-190 https://doi.org/10.1148/radiol.09091105
  94. Lin C, Luciani A, Itti E, El-Gnaoui T, Vignaud A, Beaussart P, et al. Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol 2010;20:2027-2038 https://doi.org/10.1007/s00330-010-1758-y
  95. Baur A, Stabler A, Nagel D, Lamerz R, Bartl R, Hiller E, et al. Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 2002;95:1334-1345 https://doi.org/10.1002/cncr.10818
  96. Ripa RS, Knudsen A, Hag AM, Lebech AM, Loft A, Keller SH, et al. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging 2013;3:361-371
  97. Nappi C, El Fakhri G. State of the Art in Cardiac Hybrid Technology: PET/MR. Curr Cardiovasc Imaging Rep 2013;6:338-345 https://doi.org/10.1007/s12410-013-9213-5
  98. Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology 2013;268:366-373 https://doi.org/10.1148/radiol.13130231
  99. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med 2013;54:402-415 https://doi.org/10.2967/jnumed.112.105353
  100. Rischpler C, Nekolla SG, Beer AJ. PET/MR imaging of atherosclerosis: initial experience and outlook. Am J Nucl Med Mol Imaging 2013;3:393-396
  101. Neuner I, Kaffanke JB, Langen KJ, Kops ER, Tellmann L, Stoffels G, et al. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment. Eur Radiol 2012;22:2568-2580 https://doi.org/10.1007/s00330-012-2543-x
  102. Heiss WD. The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 2009;36 Suppl 1:S105-S112 https://doi.org/10.1007/s00259-008-0962-3
  103. Leibfarth S, Monnich D, Welz S, Siegel C, Schwenzer N, Schmidt H, et al. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning. Acta Oncol 2013;52:1353-1359 https://doi.org/10.3109/0284186X.2013.813964
  104. von Schulthess GK. Why buy a PET/MR for high end research? J Magn Reson Imaging 2014;40:283-284 https://doi.org/10.1002/jmri.24426
  105. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 2010;51:1198-1205 https://doi.org/10.2967/jnumed.110.074773
  106. Schwenzer NF, Stegger L, Bisdas S, Schraml C, Kolb A, Boss A, et al. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients--current state of image quality. Eur J Radiol 2012;81:3472-3478 https://doi.org/10.1016/j.ejrad.2011.12.027
  107. Boss A, Kolb A, Hofmann M, Bisdas S, Nagele T, Ernemann U, et al. Diffusion tensor imaging in a human PET/MR hybrid system. Invest Radiol 2010;45:270-274 https://doi.org/10.1097/RLI.0b013e3181dc3671

Cited by

  1. Visualization of stress fractures of the foot using PET-MRI: a feasibility study vol.20, pp.20, 2015, https://doi.org/10.1186/s40001-015-0193-6
  2. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications vol.16, pp.5, 2015, https://doi.org/10.3348/kjr.2015.16.5.973
  3. Imaging of primary pediatric lymphoma of bone vol.46, pp.8, 2015, https://doi.org/10.1007/s00247-016-3597-8
  4. Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold vol.17, pp.5, 2016, https://doi.org/10.3348/kjr.2016.17.5.684
  5. MRI-Based Attenuation Correction for PET/MRI Using Multiphase Level-Set Method vol.57, pp.4, 2015, https://doi.org/10.2967/jnumed.115.163550
  6. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging vol.31, pp.4, 2016, https://doi.org/10.1097/rti.0000000000000210
  7. PET-CMR in heart failure - synergistic or redundant imaging? vol.22, pp.4, 2015, https://doi.org/10.1007/s10741-017-9607-6
  8. Whole‐body PET/MRI for colorectal cancer staging: Is it the way forward? vol.45, pp.1, 2017, https://doi.org/10.1002/jmri.25337
  9. Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges vol.288, pp.1, 2015, https://doi.org/10.1148/radiol.2018171187
  10. Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning vol.59, pp.10, 2018, https://doi.org/10.2967/jnumed.117.202317
  11. Feasibility of High Spatial Resolution Working Modes for Clinical PET Scanner vol.7, pp.4, 2018, https://doi.org/10.4236/ijmpcero.2018.74045
  12. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  13. Generation of PET Attenuation Map for Whole-Body Time-of-Flight 18F-FDG PET/MRI Using a Deep Neural Network Trained with Simultaneously Reconstructed Activity and Attenuation Maps vol.60, pp.8, 2019, https://doi.org/10.2967/jnumed.118.219493
  14. PET/MRI in large-vessel vasculitis: clinical value for diagnosis and assessment of disease activity vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-48709-w
  15. SimPET: a Preclinical PET Insert for Simultaneous PET/MR Imaging vol.22, pp.5, 2020, https://doi.org/10.1007/s11307-020-01491-y
  16. Combinative evaluation of primary tumor and lymph nodes to predict pelvic lymphatic metastasis in cervical cancer: an integrated PET-IVIM MRI study vol.20, pp.1, 2015, https://doi.org/10.1186/s40644-020-00298-y
  17. Accurate Transmission-Less Attenuation Correction Method for Amyloid-β Brain PET Using Deep Neural Network vol.10, pp.15, 2021, https://doi.org/10.3390/electronics10151836