DOI QR코드

DOI QR Code

Diabetic Cardiomyopathy; Summary of 41 Years

  • Yilmaz, Samet (Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic) ;
  • Canpolat, Ugur (Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic) ;
  • Aydogdu, Sinan (Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic) ;
  • Abboud, Hanna Emily (Division of Nephrology, University of Texas Health Science Center)
  • 투고 : 2014.11.03
  • 심사 : 2015.03.05
  • 발행 : 2015.07.30

초록

Patients with diabetes have an increased risk for development of cardiomyopathy, even in the absence of well known risk factors like coronary artery disease and hypertension. Diabetic cardiomyopathy was first recognized approximately four decades ago. To date, several pathophysiological mechanisms thought to be responsible for this new entity have also been recognized. In the presence of hyperglycemia, non-enzymatic glycosylation of several proteins, reactive oxygen species formation, and fibrosis lead to impairment of cardiac contractile functions. Impaired calcium handling, increased fatty acid oxidation, and increased neurohormonal activation also contribute to this process. Demonstration of left ventricular hypertrophy, early diastolic and late systolic dysfunction by sensitive techniques, help us to diagnose diabetic cardiomyopathy. Traditional treatment of heart failure is beneficial in diabetic cardiomyopathy, but specific strategies for prevention or treatment of cardiac dysfunction in diabetic patients has not been clarified yet. In this review we will discuss clinical and experimental studies focused on pathophysiology of diabetic cardiomyopathy, and summarize diagnostic and therapeutic approaches developed towards this entity.

키워드

참고문헌

  1. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis:epidemiology, pathophysiology, and management. JAMA 2002;287:2570-81. https://doi.org/10.1001/jama.287.19.2570
  2. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972;30:595-602. https://doi.org/10.1016/0002-9149(72)90595-4
  3. Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 2008;121:748-57. https://doi.org/10.1016/j.amjmed.2008.03.046
  4. Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy--fact or fiction? Herz 2011;36:102-15. https://doi.org/10.1007/s00059-011-3429-4
  5. From AM, Leibson CL, Bursi F, et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med 2006;119:591-9. https://doi.org/10.1016/j.amjmed.2006.05.024
  6. Rutter MK, Parise H, Benjamin EJ, et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation 2003;107:448-54. https://doi.org/10.1161/01.CIR.0000045671.62860.98
  7. Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 2000;101:2271-6. https://doi.org/10.1161/01.CIR.101.19.2271
  8. Velagaleti RS, Gona P, Chuang ML, et al. Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: the Framingham Heart Study. Circ Cardiovasc Imaging 2010;3:257-63. https://doi.org/10.1161/CIRCIMAGING.109.911438
  9. Palmieri V, Capaldo B, Russo C, et al. Uncomplicated type 1 diabetes and preclinical left ventricular myocardial dysfunction: insights from echocardiography and exercise cardiac performance evaluation. Diabetes Res Clin Pract 2008;79:262-8. https://doi.org/10.1016/j.diabres.2007.09.014
  10. Huisamen B, van Zyl M, Keyser A, Lochner A. The effects of insulin and beta-adrenergic stimulation on glucose transport, glut 4 and PKB activation in the myocardium of lean and obese non-insulin dependent diabetes mellitus rats. Mol Cell Biochem 2001;223:15-25. https://doi.org/10.1023/A:1017528402205
  11. Cay S, Ozturk S, Biyikoglu SF, Atak R, Balbay Y, Aydogdu S. Association of aortic pressures with fasting plasma glucose in patients with and without impaired fasting glucose. Blood Press 2008;17:164-9. https://doi.org/10.1080/08037050802218417
  12. Paulus WJ, Tschöpe C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007;28:2539-50. https://doi.org/10.1093/eurheartj/ehm037
  13. Brooks BA, Franjic B, Ban CR, et al. Diastolic dysfunction and abnormalities of the microcirculation in type 2 diabetes. Diabetes Obes Metab 2008;10:739-46. https://doi.org/10.1111/j.1463-1326.2007.00803.x
  14. Shivalkar B, Dhondt D, Goovaerts I, et al. Flow mediated dilatation and cardiac function in type 1 diabetes mellitus. Am J Cardiol 2006;97:77-82. https://doi.org/10.1016/j.amjcard.2005.07.111
  15. Adal E, Koyuncu G, Aydin A, Celebi A, Kavunoglu G, Cam H. Asymptomatic cardiomyopathy in children and adolescents with type 1 diabetes mellitus: association of echocardiographic indicators with duration of diabetes mellitus and metabolic parameters. J Pediatr Endocrinol Metab 2006;19:713-26.
  16. von Bibra H, St John Sutton M. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia 2010;53:1033-45. https://doi.org/10.1007/s00125-010-1682-3
  17. Di Bonito P, Moio N, Cavuto L, et al. Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med 2005;22:1720-5. https://doi.org/10.1111/j.1464-5491.2005.01685.x
  18. Semeniuk LM, Kryski AJ, Severson DL. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol 2002;283:976-82. https://doi.org/10.1152/ajpheart.00088.2002
  19. Bella JN, Devereux RB, Roman MJ, et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am J Cardiol 2001;87:1260-5. https://doi.org/10.1016/S0002-9149(01)01516-8
  20. Jellis CL, Stanton T, Leano R, Martin J, Marwick TH. Usefulness of at rest and exercise hemodynamics to detect subclinical myocardial disease in type 2 diabetes mellitus. Am J Cardiol 2011;107:615-21. https://doi.org/10.1016/j.amjcard.2010.10.024
  21. Christoffersen C, Bollano E, Lindegaard ML, et al. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 2003;144:3483-90. https://doi.org/10.1210/en.2003-0242
  22. Pereira L, Matthes J, Schuster I, et al. Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 2006;55:608-15. https://doi.org/10.2337/diabetes.55.03.06.db05-1284
  23. Shishehbor MH, Hoogwerf BJ, Schoenhagen P, et al. Relation of hemoglobin A1c to left ventricular relaxation in patients with type 1 diabetes mellitus and without overt heart disease. Am J Cardiol 2003;91:1514-7. https://doi.org/10.1016/S0002-9149(03)00414-4
  24. Malhotra A, Sanghi V. Regulation of contractile proteins in diabetic heart. Cardiovasc Res 1997;34:34-40. https://doi.org/10.1016/S0008-6363(97)00059-X
  25. Jweied EE, McKinney RD, Walker LA, et al. Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 2005;289:2478-83. https://doi.org/10.1152/ajpheart.00638.2005
  26. Falcão-Pires I, Palladini G, Gonçalves N, et al. Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol 2011;106:801-14. https://doi.org/10.1007/s00395-011-0184-x
  27. Rijzewijk LJ, van der Meer RW, Smit JW, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008;52:1793-9. https://doi.org/10.1016/j.jacc.2008.07.062
  28. Amin AH, El-Missiry MA, Othman AI. Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis. Eur J Pharmacol 2015;747:166-73. https://doi.org/10.1016/j.ejphar.2014.12.002
  29. Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 2007;93:903-7. https://doi.org/10.1136/hrt.2005.068270
  30. Turko IV, Li L, Aulak KS, Stuehr DJ, Chang YJ, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 2003;278:33972-7. https://doi.org/10.1074/jbc.M303734200
  31. Cai L, Wang J, Li Y, et al. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 2005;54:1829-37. https://doi.org/10.2337/diabetes.54.6.1829
  32. Maalouf RM, Eid AA, Gorin YC, et al. Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am J Physiol Cell Physiol 2012;302:C597-604. https://doi.org/10.1152/ajpcell.00331.2011
  33. Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 2006;55:798-805. https://doi.org/10.2337/diabetes.55.03.06.db05-1039
  34. Thomas CM, Yong QC, Rosa RM, et al. Cardiac-specific suppression of NF--${\kappa}B$ signaling prevents diabetic cardiomyopathy via inhibition of the reninangiotensin system. Am J Physiol Heart Circ Physiol 2014;307:H1036-45. https://doi.org/10.1152/ajpheart.00340.2014
  35. Feliers D, Gorin Y, Ghosh-Choudhury G, Abboud HE, Kasinath BS. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. Am J Physiol Renal Physiol 2006;290:F927-36. https://doi.org/10.1152/ajprenal.00331.2005
  36. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 2004;63:423-32. https://doi.org/10.1016/j.cardiores.2004.04.030
  37. Berg TJ, Snorgaard O, Faber J, et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 1999;22:1186-90. https://doi.org/10.2337/diacare.22.7.1186
  38. Yoshida N, Okumura K, Aso Y. High serum pentosidine concentrations are associated with increased arterial stiffness and thickness in patients with type 2 diabetes. Metabolism 2005;54:345-50. https://doi.org/10.1016/j.metabol.2004.09.014
  39. Lapolla A, Piarulli F, Sartore G, et al. Advanced glycation end products and antioxidant status in type 2 diabetic patients with and without peripheral artery disease. Diabetes Care 2007;30:670-6. https://doi.org/10.2337/dc06-1508
  40. Nożyński J, Zakliczyński M, Konecka-Mrówka D, et al. Advanced glycation end-products in myocardium-supported vessels: effects of heart failure and diabetes mellitus. J Heart Lung Transplant 2011;30:558-64. https://doi.org/10.1016/j.healun.2010.11.006
  41. Nielsen JM, Kristiansen SB, Norregaard R. et al. Blockage of receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur J Heart Fail 2009;11:638-47. https://doi.org/10.1093/eurjhf/hfp070
  42. Wu MS, Liang JT, Lin YD, Wu ET, Tseng YZ, Chang KC. Aminoguanidine prevents the impairment of cardiac pumping mechanics in rats with streptozotocin and nicotinamide-induced type 2 diabetes. Br J Pharmacol 2008;154:758-64.
  43. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 2005;109:143-59. https://doi.org/10.1042/CS20050025
  44. Frank PG, Lisanti MP. ICAM-1: role in inflammation and in the regulation of vascular permeability. Am J Physiol Heart Circ Physiol 2008;295:H926-7. https://doi.org/10.1152/ajpheart.00779.2008
  45. Dobrin JS, Lebeche D. Diabetic cardiomyopathy: signaling defects and therapeutic approaches. Expert Rev Cardiovasc Ther 2010;8:373-91. https://doi.org/10.1586/erc.10.17
  46. Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res 2010;88:229-40. https://doi.org/10.1093/cvr/cvq239
  47. Kiencke S, Handschin R, von Dahlen R, et al. Pre-clinical diabetic cardiomyopathy: prevalence, screening, and outcome. Eur J Heart Fail 2010;12:951-7. https://doi.org/10.1093/eurjhf/hfq110
  48. von Bibra H, Hansen A, Dounis V, Bystedt T, Malmberg K, Ryden L. Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Heart 2004;90:1483-4. https://doi.org/10.1136/hrt.2003.020842
  49. Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009;373:1765-72. https://doi.org/10.1016/S0140-6736(09)60697-8
  50. He YM, Yang XJ, Zhao X, et al. ${\beta}$-Blockers in heart failure: benefits of ${\beta}$-blockers according to varying male proportions of study patients. Clin Cardiol 2012;35:505-11. https://doi.org/10.1002/clc.21985

피인용 문헌

  1. Clinical Update: Cardiovascular Disease in Diabetes Mellitus : Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus – Mechanisms, Management, and Clinical Consid vol.133, pp.24, 2016, https://doi.org/10.1161/circulationaha.116.022194
  2. Heart Failure and Chronic Kidney Disease in Type 2 Diabetes vol.1, pp.3, 2015, https://doi.org/10.1515/jim-2016-0066
  3. Tissue Doppler imaging is a sensitive echocardiographic technique to detect subclinical systolic and diastolic dysfunction of both ventricles in type 1 diabetes mellitus vol.16, pp.None, 2015, https://doi.org/10.1186/s12872-016-0242-2
  4. Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/1310265
  5. Role of microRNAs in the pathogenesis of diabetic cardiomyopathy vol.6, pp.2, 2017, https://doi.org/10.3892/br.2017.841
  6. Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-13875-2
  7. Mechanisms and treatment of heart failure in diabetes vol.35, pp.4, 2015, https://doi.org/10.1002/pdi.2177
  8. Spironolactone Protects against Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/9232065
  9. Resveratrol Prevents Diabetic Cardiomyopathy by Increasing Nrf2 Expression and Transcriptional Activity vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/2150218
  10. Fibroblast growth factor 21 inhibition aggravates cardiac dysfunction in diabetic cardiomyopathy by improving lipid accumulation vol.15, pp.1, 2015, https://doi.org/10.3892/etm.2017.5375
  11. Inhibition of miR-186-5p contributes to high glucose-induced injury in AC16 cardiomyocytes vol.15, pp.1, 2018, https://doi.org/10.3892/etm.2017.5445
  12. Supplementation of Type 1 Diabetic Rats with Carrot Powder Lowers Blood Glucose without Improving Cardiac Structure and Function vol.23, pp.2, 2018, https://doi.org/10.3746/pnf.2018.23.2.115
  13. Elevated Glycemic Gap Predicts Acute Respiratory Failure and In-hospital Mortality in Acute Heart Failure Patients with Diabetes vol.9, pp.None, 2015, https://doi.org/10.1038/s41598-019-42666-0
  14. Changes in Titin and Collagen Modulate Effects of Aerobic and Resistance Exercise on Diabetic Cardiac Function vol.12, pp.5, 2015, https://doi.org/10.1007/s12265-019-09875-4
  15. Mesenchymal stem cells promote type 2 macrophage polarization to ameliorate the myocardial injury caused by diabetic cardiomyopathy vol.17, pp.1, 2015, https://doi.org/10.1186/s12967-019-1999-8
  16. Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2 vol.11, pp.1, 2015, https://doi.org/10.1186/s13287-020-01633-7
  17. Granulocyte colony-stimulating factor reduces the endoplasmic reticulum stress in a rat model of diabetic cardiomyopathy vol.68, pp.11, 2015, https://doi.org/10.1507/endocrj.ej21-0016
  18. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review vol.265, pp.None, 2015, https://doi.org/10.1016/j.jep.2020.113328
  19. Role of some serum biomarkers in the early detection of diabetic cardiomyopathy vol.7, pp.5, 2015, https://doi.org/10.2144/fsoa-2020-0184