DOI QR코드

DOI QR Code

Association of the -2518 A/G Polymorphism of MCP-1 with Breast Cancer in Punjab, North-West India

  • Sambyal, Vasudha (Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University) ;
  • Guleria, Kamlesh (Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University) ;
  • Kapahi, Ruhi (Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University) ;
  • Manjari, Mridu (Department of Pathology, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Sudan, Meena (Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Uppal, Manjit Singh (Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research) ;
  • Singh, Neeti Rajan (Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research)
  • Published : 2015.11.04

Abstract

Background: Monocyte chemoattractant protein-1 (MCP-1) is a major chemokine thought to be responsible for monocyte and T-lymphocyte recruitment in acute inflammatory conditions and recruitment of macrophages in tumors. It is also implicated in cardiovascular disease, rheumatoid arthritis and chronic obstructive pulmonary disease. The aim of the present study was to investigate the correlation between MCP-1 -2518 A/G polymorphism and breast cancer risk in patients from Amritsar city of Punjab state in North-West India. Materials and Methods: We screened DNA samples of 200 sporadic breast cancer patients and 200 age and gender matched unrelated healthy individuals for MCP-1 -2518 A/G polymorphism using the PCR-RFLP method. Results: A significantly increased frequency of the GG genotype was observed in patients as compared to controls. Individuals carrying the MCP1 -2518GG genotype had a two fold risk for breast cancer (OR=2.06, 95%CI, 1.06-3.98; p=0.03). Genetic models analysis revealed a significant association between MCP-1 -2518 A/G polymorphism and cancer risk in homozygous co-dominant (OR=2.06, 95%CI, 1.06-3.98; p=0.03) and recessive (OR=1.97, 95%CI, 1.05-3.70; p=0.03) models. Conclusions: We conclude that the GG genotype of the MCP-1-2518 A/G polymorphism is associated with increased risk to breast cancer in Punjab, North-West India.

Keywords

References

  1. Adeli K, Ogbonna G (1990). Rapid purification of human DNA from whole blood for potential application in clinical chemistry laboratories. Clin Chem, 36, 261-4.
  2. Amann B, Perabo FG, Wirger A, Hugenschmidt H, Schultze-Seemann W (1998). Urinary levels of monocyte chemoattractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. Br J Urol, 82, 118-21. https://doi.org/10.1046/j.1464-410x.1998.00675.x
  3. Arenberg DA, Keane MP, DiGiovine B, et al (2000). Macrophage infiltration in human non-small-cell lung cancer: the role of CC chemokines. Cancer Immunol Immunother, 49, 63-70. https://doi.org/10.1007/s002620050603
  4. Attar R, Agachan B, Kuran SB, et al (2010). Association of CCL2 and CCR2 gene variants with endometrial cancer in Turkish women. In Vivo, 24, 243-8.
  5. Baggiolini M (1998). Chemokines and leukocyte traffic. Nature, 392, 565-8. https://doi.org/10.1038/33340
  6. Balkwill F, Mantovani A (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539-45. https://doi.org/10.1016/S0140-6736(00)04046-0
  7. Bektas-Kayhan K, Unur M, Boy-Metin Z, Cakmakoglu B (2012). MCP-1 and CCR2 gene variants in oral squamous cell carcinoma. Oral Dis, 18, 55-9. https://doi.org/10.1111/j.1601-0825.2011.01843.x
  8. Buraczynska M, Bednarek-Skublewska A, Buraczynska K, Ksiazek A (2008). Monocyte chemoattractant protein-1 (MCP-1) gene polymorphism as a potential risk factor for cardiovascular disease in hemodialyzed patients. Cytokine, 44, 361-5. https://doi.org/10.1016/j.cyto.2008.10.001
  9. Conti I, Rollins BJ (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol, 14, 149-54. https://doi.org/10.1016/j.semcancer.2003.10.009
  10. Craig MJ, Loberg RD (2006). CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev, 25, 611-9.
  11. Da LS, Zhang Y, Zhang S, et al (2013). Association between MCP-1 -2518A/G polymorphism and cancer risk: evidence from 19 case-control studies. PLoS One, 8, 82855. https://doi.org/10.1371/journal.pone.0082855
  12. Ghilardi G, Biondi ML, La Torre A, Battaglioli L, Scorza R (2005). Breast cancer progression and host polymorphisms in the chemokine system: role of the macrophage chemoattractant protein-1 (MCP-1) -2518 G allele. Clin Chem, 51, 452-5. https://doi.org/10.1373/clinchem.2004.041657
  13. Gu H, Ni M, Guo X, et al (2011). The functional polymorphism in monocyte chemoattractant protein-1 gene increases susceptibility to gastric cancer. Med Oncol, 28, 280-5. https://doi.org/10.1007/s12032-010-9748-0
  14. Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell, 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  15. Jia LQ, Shen YC, Guo SJ, et al (2013). The 2518 A/G polymorphism in the MCP-1 gene and cancer risk: a metaanalysis. Asian Pac J Cancer Prev, 14, 3575-9. https://doi.org/10.7314/APJCP.2013.14.6.3575
  16. Joshi NN, Bhat S, Hake S, Kale M, Kannan S (2014). Opposing effects of pro- and anti-inflammatory cytokine gene polymorphisms on the risk for breast cancer in western Indian women: a pilot study. Int J Immunogenet, 41, 242-9. https://doi.org/10.1111/iji.12098
  17. Katakami N, Matsuhisa M, Kaneto H, et al (2010). Monocyte chemoattractant protein-1 (MCP-1) gene polymorphism as a potential risk factor for diabetic retinopathy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract, 89, 9-12. https://doi.org/10.1016/j.diabres.2010.04.006
  18. Kruszyna L, Lianeri M, Rubis B, et al (2011). CCL2 -2518 A/G single nucleotide polymorphism as a risk factor for breast cancer. Mol Biol Rep, 38, 1263-7. https://doi.org/10.1007/s11033-010-0225-9
  19. Kucukgergin C, Isman FK, Cakmakoglu B, Sanli O, Seckin S (2012). Association of polymorphisms in MCP-1, CCR2 and CCR5 genes with the risk and clinicopathological characteristics of prostate cancer. DNA Cell Biol, 31, 1418-24. https://doi.org/10.1089/dna.2012.1716
  20. Kucukgergin C, Isman FK, Dasdemir S, et al (2012). The role of chemokine and chemokine receptor gene variants on the susceptibility and clinicopathological characteristics of bladder cancer. Gene, 511, 7-11. https://doi.org/10.1016/j.gene.2012.09.011
  21. Landi S, Gemignani F, Bottari F, et al (2006). Polymorphisms within inflammatory genes and colorectal cancer. J Negat Results Biomed, 5, 15. https://doi.org/10.1186/1477-5751-5-15
  22. Li L, Zhang J, Weng X, Wen G (2015). Genetic variations in monocyte chemoattractant protein-1 and susceptibility to ovarian cancer. Tumor Biol, 36, 233-8. https://doi.org/10.1007/s13277-014-2619-0
  23. Li M, Knight DA, A Snyder L, Smyth MJ, Stewart TJ (2013). A role for CCL2 in both tumor progression and immunosurveillance. Oncoimmunology, 2, 25474. https://doi.org/10.4161/onci.25474
  24. Li YW, Yang CQ, Xiao YL, et al (2015). The -A2518G polymorphism in the MCP-1 gene and inflammatory bowel disease risk: A meta-analysis. J Dig Dis, 16, 177-85. https://doi.org/10.1111/1751-2980.12232
  25. Liu GX, Zhang X, Li S, Koiiche RD, Sindsceii JH, Song H (2013). Monocyte chemotactic protein-1 and CC chemokine receptor 2 polymorphisms and prognosis of renal cell carcinoma. Tumor Biol, 34, 2741-6. https://doi.org/10.1007/s13277-013-0827-7
  26. Mandal RK, Agrawal T, Mittal RD (2015). Genetic variants of chemokine CCL2 and chemokine receptor CCR2 genes and risk of prostate cancer. Tumor Biol, 36, 375-81. https://doi.org/10.1007/s13277-014-2646-x
  27. Mantovani A, Allavena P, Sica A, Balkwill F (2008). Cancerrelated inflammation. Nature, 454, 436-44. https://doi.org/10.1038/nature07205
  28. Moon JY, Jeong L, Lee S, et al (2007). Association of polymorphisms in monocyte chemoattractant protein-1 promoter with diabetic kidney failure in Korean patients with type 2 diabetes mellitus. J Korean Med Sci, 22, 810-4. https://doi.org/10.3346/jkms.2007.22.5.810
  29. Moriya R, Takahashi K, Kitahara A, et al (2014). Possible involvement of PI3K-dependent pathways in the increased VEGF120 release from osteoblastic cells preloaded with palmitate in vitro. Biochem Biophys Res Commun, 445, 275-81. https://doi.org/10.1016/j.bbrc.2014.01.120
  30. Nahon P, Sutton A, Rufat P, et al (2008). Chemokine system polymorphisms, survival and hepatocellular carcinoma occurrence in patients with hepatitis virus-related cirrhosis. World J Gastroenterol, 14, 713-9. https://doi.org/10.3748/wjg.14.713
  31. Narter KF, Agachan B, Sozen S, Cincin ZB, Isbir T (2010). CCR2-64I is a risk factor for development of bladder cancer. Genet Mol Res, 9, 685-92. https://doi.org/10.4238/vol9-2gmr829
  32. Navratilova Z (2006). Polymorphisms in CCL2&CCL5 chemokines/chemokine receptors genes and their association with diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 150, 191-204. https://doi.org/10.5507/bp.2006.028
  33. Negus RP, Stamp GW, Relf MG, et al (1995). The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest, 95, 2391-6. https://doi.org/10.1172/JCI117933
  34. Ohta M, Kitadai Y, Tanaka S, et al (2002). Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity inhuman esophageal squamous cell carcinomas. Int J Cancer, 102, 220-4. https://doi.org/10.1002/ijc.10705
  35. Polyak K (2011). Heterogeneity in breast cancer. J Clin Invest, 121, 3786-8. https://doi.org/10.1172/JCI60534
  36. Riethdorf L, Riethdorf S, Gutzlaff K, Prall F, Loning T (1996). Differential expression of the monocyte chemoattractant protein-1 gene in human papillomavirus-16-infected squamous intraepithelial lesions and squamous cell carcinomas of the cervix uteri. Am J Pathol, 149, 1469-76.
  37. Rovin BH, Lu L, Saxena R (1999). A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun, 259, 344-8. https://doi.org/10.1006/bbrc.1999.0796
  38. Saenz-Lopez P, Carretero R, Co'zar JM, et al (2008). Genetic polymorphisms of RANTES, IL1-A, MCP-1 and TNF-A genes in patients with prostate cancer. BMC Cancer, 8, 382. https://doi.org/10.1186/1471-2407-8-382
  39. Saji H, Koike M, Yamori T, et al (2001). Significant correlation of monocyte chemoattractant protein 1 expression with neovascularization and progression of breast carcinoma. Cancer, 92, 1085-91. https://doi.org/10.1002/1097-0142(20010901)92:5<1085::AID-CNCR1424>3.0.CO;2-K
  40. Singh V, Srivastava P, Srivastava N, Kapoor R, Mittal RD (2012). Association of inflammatory chemokine gene CCL2I/D with bladder cancer risk in North Indian population. Mol Biol Rep, 39, 9827-34. https://doi.org/10.1007/s11033-012-1849-8
  41. Soria G, Ben-Baruch A (2008). The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett, 267, 271-85. https://doi.org/10.1016/j.canlet.2008.03.018
  42. Taylor JG, Choi EH, Foster CB, Chanock SJ (2001). Using genetic variation to study human disease. Trends Mol Med, 7, 507-12. https://doi.org/10.1016/S1471-4914(01)02183-9
  43. Tse KP, Tsang NM, Chen KD, et al (2007). MCP1 Promoter Polymorphism at 2518 is associated with metastasis of nasopharyngeal carcinoma after treatment. Clin Cancer Res, 13, 6320-6. https://doi.org/10.1158/1078-0432.CCR-07-1029
  44. Ueno T, Toi M, Saji H, et al (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res, 6, 3282-9.
  45. Valkovic T, Lucin K, Krstulja M, Dobi-Babic R, Jonjic N (1998). Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract, 194, 335-40. https://doi.org/10.1016/S0344-0338(98)80057-5
  46. Van Coillie E, Van Damme J, Opdenakker G (1999). The MCP/ eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev, 10, 61-86. https://doi.org/10.1016/S1359-6101(99)00005-2
  47. Vazquez-Lavista LG, Lima G, Gabilondo F, Llorente L (2009). Genetic association of monocyte chemoattractant protein 1 (MCP-1)-2518 polymorphism in Mexican patients with transitional cell carcinoma of the bladder. Urology, 74, 414-8. https://doi.org/10.1016/j.urology.2009.04.016
  48. Wei X, Tian Y, Lu W, et al (2015). Functional polymorphisms in monocyte chemoattractant protein-1 are associated with increased susceptibility to ovarian cancer. DNA Cell Biol, 34, 37-42. https://doi.org/10.1089/dna.2014.2644
  49. Wu HH, Lee TH, Tee YT, et al (2013). Relationships of single nucleotide polymorphisms of monocyte chemoattractant protein 1and chemokine receptor 2 with susceptibility and clinicopathologic characteristics of neoplasia of uterine cervix in Taiwan women. Reprod Sci, 20, 1175-83. https://doi.org/10.1177/1933719113477481
  50. Yang L, Shi GL, Song CX, Xu SF (2010). Relationship between genetic polymorphism of MCP-1 and non-small-cell lung cancer in the Han nationality of North China. Genet Mol Res, 9, 765-71. https://doi.org/10.4238/vol9-2gmr740
  51. Yeh CB, Tsai HT, Chen YC, et al (2010). Genetic polymorphism of CCR2-64I increased the susceptibility of hepatocellular carcinoma. J Surg Oncol, 102, 264-70. https://doi.org/10.1002/jso.21623
  52. Yoshie O, Imai T, Nomiyama H (2001). Chemokines in immunity. Adv Immunol, 78, 57-110. https://doi.org/10.1016/S0065-2776(01)78002-9
  53. Yoshimura T, Yuhki N, Moore SK, et al (1989). Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett, 244, 487-93. https://doi.org/10.1016/0014-5793(89)80590-3
  54. Zirn B, Samans B, Spangenberg C, et al (2005). All-trans retinoic acid treatment of Wilms tumor cells reverses expression of genes associated with high risk and relapse in vivo. Oncogene, 24, 5246-51. https://doi.org/10.1038/sj.onc.1208725

Cited by

  1. The association of genetic variants in chemokine genes with the risk of psoriasis vulgaris in Chinese population vol.96, pp.46, 2017, https://doi.org/10.1097/MD.0000000000008283
  2. The rs1024611 in the CCL2 gene and risk of gynecological cancer in Asians: a meta-analysis vol.16, pp.1, 2018, https://doi.org/10.1186/s12957-018-1335-4
  3. promoter polymorphism with susceptibility to nasopharyngeal carcinoma pp.07302312, 2018, https://doi.org/10.1002/jcb.27962