DOI QR코드

DOI QR Code

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde (Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University) ;
  • Yang, Pei-Ming (Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University) ;
  • Lin, Hung-Yun (Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University)
  • Published : 2015.11.04

Abstract

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Keywords

References

  1. Akhurst RJ, Hata A (2012). Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov, 11, 790-811. https://doi.org/10.1038/nrd3810
  2. Alexandrow MG, Moses HL (1995). Transforming growth factor beta and cell cycle regulation. Cancer Res, 55, 1452-7.
  3. Anido J, Saez-Borderias A, Gonzalez-Junca A, et al (2010). TGFbeta Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell, 18, 655-68. https://doi.org/10.1016/j.ccr.2010.10.023
  4. Annes JP, Munger JS, Rifkin DB (2003). Making sense of latent TGFbeta activation. J Cell Sci, 116, 217-24. https://doi.org/10.1242/jcs.00229
  5. Ashley DM, Kong FM, Bigner DD, et al (1998). Endogenous expression of transforming growth factor beta1 inhibits growth and tumorigenicity and enhances Fas-mediated apoptosis in a murine high-grade glioma model. Cancer Res, 58, 302-9.
  6. Baxter RC (2014). IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer, 14, 329-41. https://doi.org/10.1038/nrc3720
  7. Bechmann I, Woodroofe N (2014). Immune Privilege of the Brain. In 'Neuroinflammation and CNS Disorders', Eds John Wiley & Sons, Ltd, 1-8
  8. Beier CP, Kumar P, Meyer K, et al (2012). The cancer stem cell subtype determines immune infiltration of glioblastoma. Stem Cells Dev, 21, 2753-61. https://doi.org/10.1089/scd.2011.0660
  9. Bergh JJ, Lin HY, Lansing L, et al (2005). Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinol, 146, 2864-71. https://doi.org/10.1210/en.2005-0102
  10. Bonavia R, Inda MM, Cavenee WK, et al (2011). Heterogeneity maintenance in glioblastoma: a social network. Cancer Res, 71, 4055-60. https://doi.org/10.1158/0008-5472.CAN-11-0153
  11. Bruna A, Darken RS, Rojo F, et al (2007). High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell, 11, 147-60. https://doi.org/10.1016/j.ccr.2006.11.023
  12. Cho DY, Lin SZ, Yang WK, et al (2013). Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant, 22, 731-9. https://doi.org/10.3727/096368912X655136
  13. Cosset EC, Godet J, Entz-Werle N, et al (2012). Involvement of the TGF${\beta}$ pathway in the regulation of ${\alpha}5{\beta}1$ integrins by caveolin-1 in human glioblastoma. Int J Cancer, 131, 601-11. https://doi.org/10.1002/ijc.26415
  14. D'Abaco GM, Kaye AH (2007). Integrins: molecular determinants of glioma invasion. J Clin Neurosci, 14, 1041-8. https://doi.org/10.1016/j.jocn.2007.06.019
  15. De Silva T, Ye G, Liang YY, et al (2012). Nodal promotes glioblastoma cell growth. Front Endocrinol (Lausanne), 3, 59.
  16. den Hollander MW, Bensch F, Glaudemans AW, et al (2015). TGF-beta antibody uptake in recurrent high grade glioma imaged with 89Zr-fresolimumab PET. J Nucl Med.
  17. Dieterich LC, Mellberg S, Langenkamp E, et al (2012). Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and $TGF{\beta}2$ in vascular abnormalization. J Pathol, 228, 378-90. https://doi.org/10.1002/path.4072
  18. Dubois CM, Laprise MH, Blanchette F, et al (1995). Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem, 270, 10618-24. https://doi.org/10.1074/jbc.270.18.10618
  19. Eisele G, Wick A, Eisele AC, et al (2014). Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression. J Neurooncol, 117, 141-5. https://doi.org/10.1007/s11060-014-1365-x
  20. Ernst A, Frisen J (2015). Adult Neurogenesis in Humans- Common and Unique Traits in Mammals. PLoS Biol, 13, 1002045. https://doi.org/10.1371/journal.pbio.1002045
  21. Fong YC, Hsu SF, Wu CL, et al (2009). Transforming growth factor-beta1 increases cell migration and beta1 integrin up-regulation in human lung cancer cells. Lung Cancer, 64, 13-21. https://doi.org/10.1016/j.lungcan.2008.07.010
  22. Friese MA, Wischhusen J, Wick W, et al (2004). RNA interference targeting transforming growth factor-beta enhances NKG2Dmediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res, 64, 7596-603. https://doi.org/10.1158/0008-5472.CAN-04-1627
  23. Goumans MJ, Valdimarsdottir G, Itoh S, et al (2002). Balancing the activation state of the endothelium via two distinct TGFbeta type I receptors. Embo J, 21, 1743-53. https://doi.org/10.1093/emboj/21.7.1743
  24. Gross RE, Mehler MF, Mabie PC, et al (1996). Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron, 17, 595-606. https://doi.org/10.1016/S0896-6273(00)80193-2
  25. Guo W, Giancotti FG (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol, 5, 816-26. https://doi.org/10.1038/nrm1490
  26. Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74. https://doi.org/10.1016/j.cell.2011.02.013
  27. Harris MG, Hulseberg P, Ling C, et al (2014). Immune privilege of the CNS is not the consequence of limited antigen sampling. Sci Rep, 4.
  28. Hau P, Jachimczak P, Schlingensiepen R, et al (2007). Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides, 17, 201-12. https://doi.org/10.1089/oli.2006.0053
  29. Heino J, Massague J (1989). Transforming growth factor-beta switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol Chem, 264, 21806-11.
  30. Held-Feindt J, Lutjohann B, Ungefroren H, et al (2003). Interaction of transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) in human glioma cells. J Neurooncol, 63, 117-27. https://doi.org/10.1023/A:1023943405292
  31. Helseth E, Dalen A, Unsgaard G, et al (1988). Type beta transforming growth factor and epidermal growth factor suppress the plasminogen activator activity in a human glioblastoma cell line. J Neurooncol, 6, 277-83. https://doi.org/10.1007/BF00163713
  32. Horiguchi M, Ota M, Rifkin DB (2012). Matrix control of transforming growth factor-${\beta}$ function. J Biochem, 152, 321-9. https://doi.org/10.1093/jb/mvs089
  33. Ikushima H, Todo T, Ino Y, et al (2009). Autocrine TGF-${\beta}$ signaling maintains tumorigenicity of glioma-initiating cells through sry-related HMG-Box factors. Cell Stem Cell, 5, 504-14. https://doi.org/10.1016/j.stem.2009.08.018
  34. Iqbal U, Albaghdadi H, Luo Y, et al (2010). Molecular imaging of glioblastoma multiforme using anti-insulin-like growth factor-binding protein-7 single-domain antibodies. British J Cancer, 103, 1606-16. https://doi.org/10.1038/sj.bjc.6605937
  35. Izumoto S, Ohnishi T, Arita N, et al (1996). Gene expression of neural cell adhesion molecule L1 in malignant gliomas and biological significance of L1 in glioma invasion. Cancer Res, 56, 1440-4.
  36. Jacobs JF, Idema AJ, Bol KF, et al (2010). Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol, 225, 195-9. https://doi.org/10.1016/j.jneuroim.2010.05.020
  37. Jazayeri SB, Rahimi-Movaghar V, Shokraneh F, et al (2013). Epidemiology of primary CNS tumors in Iran: a systematic review. Asian Pac J Cancer Prev, 14, 3979-85. https://doi.org/10.7314/APJCP.2013.14.6.3979
  38. Joseph JV, Conroy S, Tomar T, et al (2014). TGF-[beta] is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis, 5, 1443. https://doi.org/10.1038/cddis.2014.395
  39. Kaminska B, Kocyk M, Kijewska M (2013). TGF beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol, 986, 171-87. https://doi.org/10.1007/978-94-007-4719-7_9
  40. Katz LH, Li Y, Chen JS, et al (2013). Targeting TGF-beta signaling in cancer. Expert Opin Ther Targets, 17, 743-60. https://doi.org/10.1517/14728222.2013.782287
  41. Kulkarni AB, Huh CG, Becker D, et al (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A, 90, 770-4. https://doi.org/10.1073/pnas.90.2.770
  42. Lacouture M, Morris J, Lawrence D, et al (2015). Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor ${\beta}$ by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol Immunother, 64, 437-46. https://doi.org/10.1007/s00262-015-1653-0
  43. Lai J-H, Jan H-J, Liu L-W, et al (2013). Nodal regulates energy metabolism in glioma cells by inducing expression of hypoxia-inducible factor $1{\alpha}$. Neuro-Oncol, 15, 1330-41. https://doi.org/10.1093/neuonc/not086
  44. Lee CC, Jan HJ, Lai JH, et al (2010). Nodal promotes growth and invasion in human gliomas. Oncogene, 29, 3110-23. https://doi.org/10.1038/onc.2010.55
  45. Li W, Cogswell CA, LoTurco JJ (1998). Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci, 18, 8853-62.
  46. Liang H, Yi L, Wang X, et al (2014). Interleukin-17 facilitates the immune suppressor capacity of high-grade gliomaderived CD4 (+) CD25 (+) Foxp3 (+) T cells via releasing transforming growth factor beta. Scand J Immunol, 80, 144-50. https://doi.org/10.1111/sji.12185
  47. Lim DA, Tramontin AD, Trevejo JM, et al (2000). Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 28, 713-26. https://doi.org/10.1016/S0896-6273(00)00148-3
  48. Louis DN, Ohgaki H, Wiestler OD, et al (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 114. 97-109. https://doi.org/10.1007/s00401-007-0243-4
  49. Luwor RB, Kaye AH, Zhu HJ (2008). Transforming growth factor-beta (TGF-beta) and brain tumours. J Clin Neurosci, 15, 845-55. https://doi.org/10.1016/j.jocn.2008.01.003
  50. Martin S, Cosset EC, Terrand J, et al (2009). Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5) beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochim Biophys Acta, 1793, 354-67. https://doi.org/10.1016/j.bbamcr.2008.09.019
  51. Massague J (2012). TGFbeta signalling in context. Nat Rev Mol Cell Biol, 13, 616-30. https://doi.org/10.1038/nrm3434
  52. Massague J, Andres J, Attisano L, et al (1992). TGF-beta receptors. Mol Reprod Dev, 32, 99-104. https://doi.org/10.1002/mrd.1080320204
  53. Messaoudi K, Clavreul A, Lagarce F (2015). Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discovery Today.
  54. Mikkelsen T, Brodie C, Finniss S, et al (2009). Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer, 124, 2719-27. https://doi.org/10.1002/ijc.24240
  55. Miyazono K (2000). Positive and negative regulation of TGFbeta signaling. J Cell Sci, 113, 1101-9.
  56. Morris JC, Tan AR, Olencki TE, et al (2014). Phase i study of gc1008 (fresolimumab): a human anti-transforming growth factor-beta ($tgf{\beta}$) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE, 9, 90353. https://doi.org/10.1371/journal.pone.0090353
  57. Mrugala MM (2013). Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Discov Med, 15, 221-30.
  58. Mu Y, Gudey S, Landstrom M (2012). Non-Smad signaling pathways. Cell Tissue Res, 347, 11-20. https://doi.org/10.1007/s00441-011-1201-y
  59. Nakada M, Kita D, Watanabe T, et al (2011). Aberrant signaling pathways in glioma. Cancers (Basel), 3, 3242-78. https://doi.org/10.3390/cancers3033242
  60. Nakagawa T, Kubota T, Kabuto M, et al (1994). Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors. J Neurosurg, 81, 69-77. https://doi.org/10.3171/jns.1994.81.1.0069
  61. Ohgaki H, Kleihues P (2009). Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci, 100, 2235-41. https://doi.org/10.1111/j.1349-7006.2009.01308.x
  62. Onichtchouk D, Chen YG, Dosch R, et al (1999). Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature, 401, 480-5. https://doi.org/10.1038/46794
  63. Ostrom QT, Bauchet L, Davis FG, et al (2014a). The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol, 16, 896-913. https://doi.org/10.1093/neuonc/nou087
  64. Ostrom QT, Gittleman H, Liao P, et al (2014b). CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro- Oncol, 16, 1-63. https://doi.org/10.1093/neuonc/not237
  65. Pan JJ, Chang WJ, Barone TA, et al (2006). Increased expression of TGF-beta1 reduces tumor growth of human U-87 Glioblastoma Cells in vivo. Cancer Immunology, Immunotherapy, 55, 918-27. https://doi.org/10.1007/s00262-005-0083-9
  66. Pen A, Moreno MJ, Durocher Y, et al (2008). Glioblastomasecreted factors induce IGFBP7 and angiogenesis by modulating Smad-2-dependent TGF-[beta] signaling. Oncogene, 27, 6834-44. https://doi.org/10.1038/onc.2008.287
  67. Penuelas S, Anido J, Prieto-Sanchez RM, et al (2009). TGFbeta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell, 15, 315-27. https://doi.org/10.1016/j.ccr.2009.02.011
  68. Persano L, Pistollato F, Rampazzo E, et al (2012). BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting $HIF-1{\alpha}$ stability and MGMT expression. Cell Death Disease, 3, 412. https://doi.org/10.1038/cddis.2012.153
  69. Piccirillo SG, Vescovi AL (2006). Bone morphogenetic proteins regulate tumorigenicity in human glioblastoma stem cells. Ernst Schering Found Symp Proc, 59-81.
  70. Platten M, Wick W, Wild-Bode C, et al (2000). Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via Up-regulation of alpha(V) beta(3) integrin expression. Biochem Biophys Res Commun, 268, 607-11. https://doi.org/10.1006/bbrc.2000.2176
  71. Qiu B, Zhang D, Wang C, et al (2011). IL-10 and TGF-${\beta}2$ are overexpressed in tumor spheres cultured from human gliomas. Molecular Biology Reports, 38, 3585-91. https://doi.org/10.1007/s11033-010-0469-4
  72. Quail DF, Siegers GM, Jewer M, et al (2013). Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol, 45, 885-98. https://doi.org/10.1016/j.biocel.2012.12.021
  73. Rao JS, Steck PA, Mohanam S, et al (1993). Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res, 53, 2208-11.
  74. Reardon DA, Fink KL, Mikkelsen T, et al (2008). Randomized phase II study of cilengitide, an integrin-targeting arginineglycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol, 26, 5610-7. https://doi.org/10.1200/JCO.2008.16.7510
  75. Reguera-Nunez E, Roca C, Hardy E, et al (2014). Implantable controlled release devices for BMP-7 delivery and suppression of glioblastoma initiating cells. Biomaterials, 35, 2859-67. https://doi.org/10.1016/j.biomaterials.2013.12.001
  76. Rich JN, Zhang M, Datto MB, et al (1999). Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem, 274, 35053-8. https://doi.org/10.1074/jbc.274.49.35053
  77. Rifkin DB (2005). Latent transforming growth factor-${\beta}$ (TGF-${\beta}$) binding proteins: orchestrators of TGF-${\beta}$ availability. J Biol Chem, 280, 7409-12. https://doi.org/10.1074/jbc.R400029200
  78. Rodon L, Gonzalez-Junca A, Inda Mdel M, et al (2014). Active CREB1 promotes a malignant TGFbeta2 autocrine loop in glioblastoma. Cancer Discov, 4, 1230-41. https://doi.org/10.1158/2159-8290.CD-14-0275
  79. Roth P, Junker M, Tritschler I, et al (2010). GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res, 16, 3851-9. https://doi.org/10.1158/1078-0432.CCR-10-0705
  80. Roth P, Silginer M, Goodman SL, et al (2013). Integrin control of the transforming growth factor-${\beta}$ pathway in glioblastoma. Brain, 136, 564-76. https://doi.org/10.1093/brain/aws351
  81. Sanchez-Elsner T, Botella LM, Velasco B, et al (2001). Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem, 276, 38527-35. https://doi.org/10.1074/jbc.M104536200
  82. Sanchez-Tillo E, Liu Y, de Barrios O, et al (2012). EMTactivating transcription factors in cancer: beyond EMT and tumor invasiveness. Cellular Molecular Life Sciences, 69, 3429-56. https://doi.org/10.1007/s00018-012-1122-2
  83. Santibanez JF, Quintanilla M, Bernabeu C (2011). TGF-beta/ TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond), 121, 233-51. https://doi.org/10.1042/CS20110086
  84. Savary K, Caglayan D, Caja L, et al (2013). Snail depletes the tumorigenic potential of glioblastoma. Oncogene, 32, 5409-20. https://doi.org/10.1038/onc.2013.67
  85. Schaffner F, Ray AM, Dontenwill M (2013). Integrin ${\alpha}5{\beta}1$, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers, 5, 27-47. https://doi.org/10.3390/cancers5010027
  86. Scheel C, Weinberg RA (2012). Cancer stem cells and epithelialmesenchymal transition: concepts and molecular links. Semin Cancer Biol, 22, 396-403. https://doi.org/10.1016/j.semcancer.2012.04.001
  87. Seoane J, Le HV, Shen L, et al (2004). Integration of smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 17, 211-23.
  88. Shen L, Qu X, Ma Y, et al (2014). Tumor suppressor NDRG2 tips the balance of oncogenic TGF-[beta] via EMT inhibition in colorectal cancer. Oncogenesis, 3, 86. https://doi.org/10.1038/oncsis.2013.48
  89. Shnaper S, Desbaillets I, Brown DA, et al (2009). Elevated levels of MIC-1/GDF15 in the cerebrospinal fluid of patients are associated with glioblastoma and worse outcome. Int J Cancer, 125, 2624-30. https://doi.org/10.1002/ijc.24639
  90. Shull MM, Ormsby I, Kier AB, et al (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 359, 693-9. https://doi.org/10.1038/359693a0
  91. Siegel PM, Massague J (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer, 3, 807-21. https://doi.org/10.1038/nrc1208
  92. Silginer M, Weller M, Ziegler U, et al (2014). Integrin inhibition promotes atypical anoikis in glioma cells. Cell Death Disease, 5, 1012. https://doi.org/10.1038/cddis.2013.543
  93. Singh SK, Hawkins C, Clarke ID, et al (2004). Identification of human brain tumour initiating cells. Nature, 432, 396-401. https://doi.org/10.1038/nature03128
  94. Sottoriva A, Spiteri I, Piccirillo SG, et al (2013). Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A, 110, 4009-14. https://doi.org/10.1073/pnas.1219747110
  95. Stupp R, Hegi ME, Gorlia T, et al (2014). Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol, 15, 1100-8. https://doi.org/10.1016/S1470-2045(14)70379-1
  96. Sun G, Shi L, Li M, et al (2014a). Lefty inhibits glioma growth by suppressing nodal-activated smad and ERK1/2 pathways. J Neurol Sci, 347, 137-42. https://doi.org/10.1016/j.jns.2014.09.034
  97. Sun J, Liu S-z, Lin Y, et al (2014b). TGF-${\beta}$ promotes glioma cell growth via activating nodal expression through smad and ERK1/2 pathways. Biochem Biophys Res Communicat, 443, 1066-72. https://doi.org/10.1016/j.bbrc.2013.12.097
  98. Ten Dijke P, Arthur HM (2007). Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol, 8, 857-69. https://doi.org/10.1038/nrm2262
  99. The Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061-8. https://doi.org/10.1038/nature07385
  100. Travis MA, Sheppard D (2014). TGF-${\beta}$ activation and function in immunity. Ann Revi Immunol, 32, 51-82. https://doi.org/10.1146/annurev-immunol-032713-120257
  101. Tsuchida K, Nakatani M, Hitachi K, et al (2009). Activin signaling as an emerging target for therapeutic interventions. Cell Communicat Signal, 7, 15. https://doi.org/10.1186/1478-811X-7-15
  102. Tsukazaki T, Chiang TA, Davison AF, et al (1998). SARA, a FYVE Domain Protein that Recruits Smad2 to the TGF${\beta}$ Receptor. Cell, 95, 779-91. https://doi.org/10.1016/S0092-8674(00)81701-8
  103. Uhl M, Aulwurm S, Wischhusen J, et al (2004). SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res, 64, 7954-61. https://doi.org/10.1158/0008-5472.CAN-04-1013
  104. Utsuki S, Oka H, Miyajima Y, et al (2012). Adult cerebellar glioblastoma cases have different characteristics from supratentorial glioblastoma. Brain Tumor Pathol, 29, 87-95. https://doi.org/10.1007/s10014-011-0070-0
  105. van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al (2015). Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates.
  106. Vergeli M, mazzanti B, Ballerini C, et al (1995). Transforming growth factor-beta 1 inhibits the proliferation of rat astrocytes induced by serum and growth factors. J Neurosci Res, 40, 127-33. https://doi.org/10.1002/jnr.490400114
  107. Verhaak RGW, Hoadley KA, Purdom E, et al (2010). An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer cell, 17, 98. https://doi.org/10.1016/j.ccr.2009.12.020
  108. Wakefield LM, Hill CS (2013). Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer, 13, 328-41. https://doi.org/10.1038/nrc3500
  109. Wan YY, Flavell RA (2007). ‘Yin-Yang’ functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev, 220, 199-213. https://doi.org/10.1111/j.1600-065X.2007.00565.x
  110. Weiss A, Attisano L (2013). The TGFbeta superfamily signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biol, 2, 47-63. https://doi.org/10.1002/wdev.86
  111. Wick W, Platten M, Weller M (2001). Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol, 53, 177-85. https://doi.org/10.1023/A:1012209518843
  112. Witsch E, Sela M, Yarden Y (2010). Roles for growth factors in cancer progression. Physiol (Bethesda), 25, 85-101. https://doi.org/10.1152/physiol.00045.2009
  113. Wrana JL (1998). TGF-beta receptors and signalling mechanisms. Miner Electrolyte Metab, 24, 120-30. https://doi.org/10.1159/000057359
  114. Wrana JL (2013). Signaling by the TGF${\beta}$ superfamily. Cold Spring Harbor Perspect Biol, 5.
  115. Xu J, Acharya S, Sahin O, et al (2015). 14-3-3$\xi$ Turns TGF-${\beta}$'s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of smad partners from p53 to Gli2. Cancer Cell, 27, 177-92. https://doi.org/10.1016/j.ccell.2014.11.025
  116. Yamada N, Kato M, Yamashita H, et al (1995). Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer, 62, 386-92. https://doi.org/10.1002/ijc.2910620405
  117. Yan K, Wu Q, Yan DH, et al (2014). Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes Develop, 28, 1085-100. https://doi.org/10.1101/gad.235515.113
  118. Yang X, Letterio JJ, Lechleider RJ, et al (1999). Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. Embo J, 18, 1280-91. https://doi.org/10.1093/emboj/18.5.1280
  119. Ye S, Li P, Tong C, et al (2013). Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO Journal, 32, 2548-60. https://doi.org/10.1038/emboj.2013.175
  120. Ye XZ, Xu SL, Xin YH, et al (2012). Tumor-associated microglia/ macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol, 189, 444-53. https://doi.org/10.4049/jimmunol.1103248
  121. Zagzag D, Salnikow K, Chiriboga L, et al (2005). Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest, 85, 328-41. https://doi.org/10.1038/labinvest.3700233
  122. Zhang DF, Li XG, Su LJ, et al (2010). Expression of activin A and follistatin in glioblastoma and their effects on U87 in vitro. J Int Med Res, 38, 1343-53. https://doi.org/10.1177/147323001003800416
  123. Zhang L, Sato E, Amagasaki K, et al (2006). Participation of an abnormality in the transforming growth factor-beta signaling pathway in resistance of malignant glioma cells to growth inhibition induced by that factor. J Neurosurg, 105, 119-28. https://doi.org/10.3171/jns.2006.105.1.119
  124. Zong H, Parada LF, Baker SJ (2015). Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol.

Cited by

  1. Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma vol.17, pp.3, 2016, https://doi.org/10.7314/APJCP.2016.17.3.927
  2. Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease vol.131, pp.2, 2017, https://doi.org/10.1007/s11060-016-2298-3
  3. Blockade of transforming growth factor-β signaling enhances oncolytic herpes simplex virus efficacy in patient-derived recurrent glioblastoma models vol.141, pp.11, 2017, https://doi.org/10.1002/ijc.30929
  4. TGF-β Signaling in Gastrointestinal Cancers: Progress in Basic and Clinical Research vol.6, pp.1, 2017, https://doi.org/10.3390/jcm6010011
  5. Combined immunization against TGF-β1 enhances HPV16 E7-specific vaccine-elicited antitumour immunity in mice with grafted TC-1 tumours pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1482306