DOI QR코드

DOI QR Code

Helicobacter pylori cag Pathogenicity Island cagL and orf17 Genotypes Predict Risk of Peptic Ulcerations but not Gastric Cancer in Iran

  • Raei, Negin (Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili) ;
  • Latifi-Navid, Saeid (Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili) ;
  • Zahri, Saber (Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili)
  • Published : 2015.10.06

Abstract

Background: Gastric cancer (GC) is the third most common cancer regarding mortality in the world. The cag pathogenicity island (PAI) of Helicobacter pylori which contains genes associated with a more aggressive phenotype may involve in the pathogenesis of gastrointestinal disease. We here aimed to examine the associations of cagH, cagL, orf17, and cagG genotypes of H. pylori cag PAI with severe gastrointestinal disease. Materials and Methods: A total of 242 H. pylori strains were genotyped. Histopathological examination and classification of subjects were performed. Results: The frequencies of the cagH, cagL, cagG, and orf17 genotypes were 40/54 (74.1%), 53/54 (98.1%), 38/54 (70.4%), and 43/54 (79.6%), respectively, in patients with peptidic ulceration (PU),while in the control group, the frequencies were 87/147 (59.6%) for cagH, 121/146 (82.9%) for cagL, 109/146 (74.7%) for cagG, and 89/146 (61.0%) for orf17. The results of simple logistic regression analysis showed that the cagL and orf17 genotypes were significantly associated with an increased risk of PU not GC; the ORs (95% CI) were 10.950 (1.446-82.935), and 2.504 (1.193-5.253), respectively. No significant association was found between the cagH and cagG genotypes and the risk of both the PU and the GC in Iran (P>0.05). Finally, multiple logistic regression analysis showed that the cagL genotype was independently and significantly associated with the age-and sex-adjusted risk for PU; the OR (95% CI) was 9.557 (1.219-17.185). Conclusions: We conclude that the orf17 and especially cagL genotypes of H. pylori cag PAI could be factors for risk prediction of PU, but not GC in Iran.

Keywords

References

  1. (1994). NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. JAMA, 272, 65-9. https://doi.org/10.1001/jama.1994.03520010077036
  2. Asahi M, Azuma T, Ito S, et al (2000). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med, 191, 593-602. https://doi.org/10.1084/jem.191.4.593
  3. Atherton JC, Cao P, Peek RM, Jr., et al (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem, 270, 17771-7. https://doi.org/10.1074/jbc.270.30.17771
  4. Audibert C, Burucoa C, Janvier B, et al (2001). implication of the structure of the Helicobacter pylori cag pathogenicity island in induction of interleukin-8 secretion. Infect Immun, 69, 1625-9. https://doi.org/10.1128/IAI.69.3.1625-1629.2001
  5. Backert S, Clyne M, Tegtmeyer N (2011). Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal, 9, 28. https://doi.org/10.1186/1478-811X-9-28
  6. Backert S, Fronzes R, Waksman G (2008). VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol, 16, 409-13. https://doi.org/10.1016/j.tim.2008.07.001
  7. Backert S, Selbach M (2008). Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol, 10, 1573-81. https://doi.org/10.1111/j.1462-5822.2008.01156.x
  8. Blaser MJ (1992a). Helicobacter pylori: its role in disease. Clin Infect Dis, 15, 386-91. https://doi.org/10.1093/clind/15.3.386
  9. Blaser MJ (1992b). Hypotheses on the pathogenesis and natural history of Helicobacter pylori-induced inflammation. Gastroenterol, 102, 720-7.
  10. Blaser MJ, Parsonnet J (1994). Parasitism by the “slow” bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J Clin Invest, 94, 4-8. https://doi.org/10.1172/JCI117336
  11. Censini S, Lange C, Xiang Z, et al (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A, 93, 14648-53. https://doi.org/10.1073/pnas.93.25.14648
  12. Covacci A, Censini S, Bugnoli M, et al (1993). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A, 90, 5791-5. https://doi.org/10.1073/pnas.90.12.5791
  13. Crabtree JE, Covacci A, Farmery SM, et al (1995a). Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J Clin Pathol, 48, 41-5. https://doi.org/10.1136/jcp.48.1.41
  14. Crabtree JE, Xiang Z, Lindley IJ, et al (1995b). Induction of interleukin-8 secretion from gastric epithelial cells by a cagA negative isogenic mutant of Helicobacter pylori. J Clin Pathol, 48, 967-9. https://doi.org/10.1136/jcp.48.10.967
  15. Dixon MF, Genta RM, Yardley JH, et al (1996). Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol, 20, 1161-81.
  16. Erzin Y, Koksal V, Altun S, et al (2006). Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA, babA2 genotypes and correlation with clinical outcome in Turkish patients with dyspepsia. Helicobacter, 11, 574-80. https://doi.org/10.1111/j.1523-5378.2006.00461.x
  17. Figura N, Valassina M (1999). Helicobacter pylori determinants of pathogenicity. J Chemother, 11, 591-600. https://doi.org/10.1179/joc.1999.11.6.591
  18. Fischer W, Puls J, Buhrdorf R, et al (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol, 42, 1337-48.
  19. Hessey SJ, Spencer J, Wyatt JI, et al (1990). Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis. Gut, 31, 134-8. https://doi.org/10.1136/gut.31.2.134
  20. Hsu PI, Hwang IR, Cittelly D, et al (2002). Clinical presentation in relation to diversity within the Helicobacter pylori cag pathogenicity island. Am J Gastroenterol, 97, 2231-8. https://doi.org/10.1111/j.1572-0241.2002.05977.x
  21. Kapadia CR (2003). Gastric atrophy, metaplasia, and dysplasia: a clinical perspective. J Clin Gastroenterol, 36, 29-36. https://doi.org/10.1097/00004836-200305001-00006
  22. Kelley JR, Duggan JM (2003). Gastric cancer epidemiology and risk factors. J Clin Epidemiol, 56, 1-9. https://doi.org/10.1016/S0895-4356(02)00534-6
  23. Kusters JG, van Vliet AH, Kuipers EJ (2006). Pathogenesis of helicobacter pylori infection. Clin Microbiol Rev, 19, 449-90. https://doi.org/10.1128/CMR.00054-05
  24. Kwok T, Zabler D, Urman S, et al (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature, 449, 862-6. https://doi.org/10.1038/nature06187
  25. Li CQ, Pignatelli B, Ohshima H (2001). Increased oxidative and nitrative stress in human stomach associated with cagA+ Helicobacter pylori infection and inflammation. Dig Dis Sci, 46, 836-44. https://doi.org/10.1023/A:1010764720524
  26. Logan RP (1996). Adherence of Helicobacter pylori. Aliment Pharmacol Ther, 10, 3-15. https://doi.org/10.1046/j.1365-2036.1996.22164001.x
  27. Lu Y, Redlinger TE, Avitia R, et al (2002). Isolation and genotyping of Helicobacter pylori from untreated municipal wastewater. Appl Environ Microbiol, 68, 1436-9. https://doi.org/10.1128/AEM.68.3.1436-1439.2002
  28. Mahdavi J, Sonden B, Hurtig M, et al (2002). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science, 297, 573-8. https://doi.org/10.1126/science.1069076
  29. Malekzadeh R, Derakhshan MH, Malekzadeh Z (2009). Gastric cancer in Iran: epidemiology and risk factors. Arch Iran Med, 12, 576-83.
  30. Matsuhisa TM, Yamada NY, Kato SK, et al (2003). Helicobacter pylori infection, mucosal atrophy and intestinal metaplasia in Asian populations: a comparative study in age-, genderand endoscopic diagnosis-matched subjects. Helicobacter, 8, 29-35. https://doi.org/10.1046/j.1523-5378.2003.00121.x
  31. McColl KE, El-Omar E (2002). How does H. pylori infection cause gastric cancer? Keio J Med, 51, 53-6. https://doi.org/10.2302/kjm.51.supplement2_53
  32. Megraud F (2001). Impact of Helicobacter pylori virulence on the outcome of gastroduodenal diseases: lessons from the microbiologist. Dig Dis, 19, 99-103. https://doi.org/10.1159/000050662
  33. Miernyk K, Morris J, Bruden D, et al (2011). Characterization of Helicobacter pylori cagA and vacA genotypes among Alaskans and their correlation with clinical disease. J Clin Microbiol, 49, 3114-21. https://doi.org/10.1128/JCM.00469-11
  34. Mizushima T, Sugiyama T, Kobayashi T, et al (2002). Decreased adherence of cagG-deleted Helicobacter pylori to gastric epithelial cells in Japanese clinical isolates. Helicobacter, 7, 22-9. https://doi.org/10.1046/j.1523-5378.2002.00052.x
  35. Mousavi SM, Gouya MM, Ramazani R, et al (2009). Cancer incidence and mortality in Iran. Ann Oncol, 20, 556-63.
  36. Parkin DM (2004). International variation. Oncogene, 23, 6329-40. https://doi.org/10.1038/sj.onc.1207726
  37. Parsonnet J, Friedman GD, Orentreich N, et al (1997). Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut, 40, 297-301. https://doi.org/10.1136/gut.40.3.297
  38. Peek RM, Jr., Blaser MJ (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer, 2, 28-37. https://doi.org/10.1038/nrc703
  39. Perez-Perez GI, Peek RM, Legath AJ, et al (1999). The role of CagA status in gastric and extragastric complications of helicobacter pylori. J Physiol Pharmacol, 50, 833-45.
  40. Rieder G, Hatz RA, Moran AP, et al (1997). Role of adherence in interleukin-8 induction in Helicobacter pylori-associated gastritis. Infect Immun, 65, 3622-30.
  41. Sadjadi A, Malekzadeh R, Derakhshan MH, et al (2003). Cancer occurrence in Ardabil: results of a population-based cancer registry from Iran. Int J Cancer, 107, 113-8. https://doi.org/10.1002/ijc.11359
  42. Samson R, Legendre JB, Christen R, et al (2005). Transfer of Pectobacterium chrysanthemi (Burkholder et al 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol, 55, 1415-27. https://doi.org/10.1099/ijs.0.02791-0
  43. Schmidt HM, Andres S, Nilsson C, et al (2010). The cag PAI is intact and functional but HP0521 varies significantly in Helicobacter pylori isolates from Malaysia and Singapore. Eur J Clin Microbiol Infect Dis, 29, 439-51. https://doi.org/10.1007/s10096-010-0881-7
  44. Segal ED, Falkow S, Tompkins LS (1996). Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A, 93, 1259-64. https://doi.org/10.1073/pnas.93.3.1259
  45. Sepulveda AR, Graham DY (2002). Role of Helicobacter pylori in gastric carcinogenesis. Gastroenterol Clin North Am, 31, 517-35. https://doi.org/10.1016/S0889-8553(02)00012-2
  46. Shaffer CL, Gaddy JA, Loh JT, et al (2011). Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog, 7, 1002237. https://doi.org/10.1371/journal.ppat.1002237
  47. Sharma SA, Tummuru MK, Miller GG, et al (1995). Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect Immun, 63, 1681-87.
  48. Shimoyama T, Everett SM, Dixon MF, et al (1998). Chemokine mRNA expression in gastric mucosa is associated with Helicobacter pylori cagA positivity and severity of gastritis. J Clin Pathol, 51, 765-70. https://doi.org/10.1136/jcp.51.10.765
  49. Shiota S, Watada M, Matsunari O, et al (2012). Helicobacter pylori iceA, clinical outcomes, and correlation with cagA: a meta-analysis. PLoS One, 7, 30354. https://doi.org/10.1371/journal.pone.0030354
  50. Stein M, Rappuoli R, Covacci A (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A, 97, 1263-8. https://doi.org/10.1073/pnas.97.3.1263
  51. Tomb JF, White O, Kerlavage AR, et al (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388, 539-47. https://doi.org/10.1038/41483
  52. Tummuru MK, Sharma SA, Blaser MJ (1995). Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol Microbiol, 18, 867-76. https://doi.org/10.1111/j.1365-2958.1995.18050867.x
  53. Wang H, Huang S, Zhao J, et al (2013). Expression of CagL from Helicobacter pylori and Preliminary Study of its Biological Function. Indian J Microbiol, 53, 36-40. https://doi.org/10.1007/s12088-012-0341-4
  54. Weel JF, van der Hulst RW, Gerrits Y, et al (1996). The interrelationship between cytotoxin-associated gene A, vacuolating cytotoxin, and Helicobacter pylori-related diseases. J Infect Dis, 173, 1171-5. https://doi.org/10.1093/infdis/173.5.1171
  55. Yadegar A, Mobarez AM, Alebouyeh M, et al (2014). Clinical relevance of cagL gene and virulence genotypes with disease outcomes in a Helicobacter pylori infected population from Iran. World J Microbiol Biotechnol, 30, 2481-90. https://doi.org/10.1007/s11274-014-1673-5
  56. Yamaoka Y (2010). Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol, 7, 629-41.
  57. Yamaoka Y, Kita M, Kodama T, et al (1998). Chemokines in the gastric mucosa in Helicobacter pylori infection. Gut, 42, 609-17. https://doi.org/10.1136/gut.42.5.609
  58. Yeh YC, Chang WL, Yang HB, et al (2011). H. pylori cagL amino acid sequence polymorphism Y58E59 induces a corpus shift of gastric integrin alpha5beta1 related with gastric carcinogenesis. Mol Carcinog, 50, 751-9. https://doi.org/10.1002/mc.20753
  59. Zhou J, Zhang H, Wu J, et al (2011). A novel multidomain polyketide synthase is essential for zeamine production and the virulence of Dickeya zeae. Mol Plant Microbe Interact, 24, 1156-64. https://doi.org/10.1094/MPMI-04-11-0087

Cited by

  1. Helicobacter pylori babA2 Positivity Predicts Risk of Gastric Cancer in Ardabil, a Very High-Risk Area in Iran vol.17, pp.2, 2016, https://doi.org/10.7314/APJCP.2016.17.2.733
  2. CagL polymorphisms D58/K59 are predominant in Helicobacter pylori strains isolated from Mexican patients with chronic gastritis vol.11, pp.1, 2019, https://doi.org/10.1186/s13099-019-0286-9