DOI QR코드

DOI QR Code

Analysis and research on teeth thermodynamic coupling contact of gear transmission system

  • Wang, Xigui (Mechatronics school, Harbin Institute of Technology) ;
  • Wang, Yongmei (Motorcar Engineering, Heilongjiang Institute of Technology) ;
  • Zhao, Xuezeng (Mechatronics school, Harbin Institute of Technology) ;
  • Li, Xinglin (Hangzhou Bearing Test and Research Center)
  • Received : 2014.11.20
  • Accepted : 2015.09.05
  • Published : 2015.09.25

Abstract

In the gear meshing process, gear temperature field concerns the meshing surface friction, the friction heat depends on the contact pressure, the contact pressure is affected by the elastic deformation of gears and the temperature field caused by the thermal deformation, so the temperature field, stress field and displacement field should be mutual coupling. It is necessary to consider in meshing gear pair in the operation process of thermodynamic coupling contact stress (TCCS) and thermodynamic coupling deformation (TCD), and based on thermodynamic coupling analysis (TCA) of gear teeth deformation.

Keywords

References

  1. Bendavid, A., Martin, P.J., Randeniya, L., Amin, M.S. and Rohanizadeh, R. (2010), "The properties of fluorine-containing diamond-like carbon films prepared by pulsed DC plasma-activated chemical vapour deposition", Diamond Relat. Mater., 19, 1466-1471. https://doi.org/10.1016/j.diamond.2010.10.001
  2. Czichos, I.H. (2010), Tribologie-Handbuch, (3th Ed.), Praxis, Berlin.
  3. De Mello, J.D.B., Binder, R., Demas, N.G. and Polycarpou, A.A. (2009), "Polycarpou. Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating", Wear, 267, 907-915. https://doi.org/10.1016/j.wear.2008.12.070
  4. De Mello, J.D.B., Binder, C., Hammes, G. and Klein, A.N. (2013), "Effect of the metallic matrix on the sliding wear of plasma assisted debinded and sintered MIM self-lubricating steel", Wear, 301, 648-655. https://doi.org/10.1016/j.wear.2013.01.011
  5. Efremov, E.V., Ariese, F. and Gooijer, C. (2008), "Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential", Anal. Chim. Acta., 606, 119-134. https://doi.org/10.1016/j.aca.2007.11.006
  6. Escobar Galindo, R., Gago, R., Albella, J.M. and Lousa, A. (2009), "Comparative depth-profiling analysis of nanometer-metal multilayers by ion-probing techniques", TrAC Trends Anal. Chem., 28, 494-505. https://doi.org/10.1016/j.trac.2009.01.004
  7. Hammes, G., Schroeder, R., Binder, C., Klein, A.N. and de Mello, J.D.B. (2014), "Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites", Tribol. Int., 70, 119-127. https://doi.org/10.1016/j.triboint.2013.09.016
  8. Hanesch, M. (2009), "Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies", Geophys. J. Int., 177, 941-948. https://doi.org/10.1111/j.1365-246X.2009.04122.x
  9. Gayathri, S., Kumar, N., Krishnan, R., Ravindran, T.R., Dash, S. and Tyagi, A.K. et al. (2012), "Tribological properties of pulsed laser deposited DLC/TM (TM=Cr, Ag, Ti and Ni) multilayers", Tribol. Int., 53, 87-97. https://doi.org/10.1016/j.triboint.2012.04.015
  10. Kim, H.K., Park, S.H., Lee, H.G., Kim, D.R. and Lee, Y.H. (2007), "Approximation of contact stress for a compressed and laterally one side restrained O-ring", Eng. Fail Anal., 14(8), 1680-1692. https://doi.org/10.1016/j.engfailanal.2006.11.061
  11. Marciano, F.R., Almeida, E.C., Lima-Oliveira, D.A., Corat, E.J. and Trava-Airoldi, V.J. (2010), "Improvement of DLC electrochemical corrosion resistance by addiction of fluorine", Diamond Relat. Mater., 19, 537-540. https://doi.org/10.1016/j.diamond.2009.12.015
  12. Mironova-Ulmane, N., Kuzmin, A., Steins, I., Grabis, J., Sildos, I. and Pars, M. (2007), "Raman scattering in nanosized nickel oxide NiO", J. Phys. Conf. Ser., 93, 012039. https://doi.org/10.1088/1742-6596/93/1/012039
  13. Mishra, M. et al. (2012), "Friction model for single-asperity elastic-plastic contacts", Phys. Rev. B: Condens. Matter., 86, 4.
  14. Mishra, M. and Szlufarska, I. (2012), "Analytical model for plowing friction at nanoscale", Tribol. Lett., 45 (3), 417-426. https://doi.org/10.1007/s11249-011-9899-y
  15. Mo, Y.F., Turner, K.T. and Szlufarska, I. (2009), "Friction laws at the nanoscale", Nature, 457(7233), 1116-1119. https://doi.org/10.1038/nature07748
  16. Mo, Y.F. and Szlufarska, I. (2010), "Roughness picture of friction in dry nanoscale contacts", Phys. Rev. B: Condens. Matter., 81, 3.
  17. Nikas, G.K. (2010), "Eighty years of research on hydraulic reciprocating seals: review of tribological studies and related topics since the 1930s", Proceedings of the Inst. Mech. Eng. Part J J Eng Tribol., 224 (1), 1-23. https://doi.org/10.1243/13506501JET607
  18. Radhika, R., Kumar, N., Kozakov, A.T., Sankaran, K.J., Dash, S. and Tyagi, A.K. et al. (2014), "Role of transfer layer on tribological properties of nanocrystalline diamond nanowire film sliding against alumina allotropes", Diamond Relat. Mater., 48, 6-18. https://doi.org/10.1016/j.diamond.2014.06.005
  19. Rout, T.K. (2007), "Nanolayered oxide on a steel surface reduces surface reactivity: Evaluation by glow discharge optical emission spectroscopy (GDOES)", Scripta Mater., 56(7), 573-576. https://doi.org/10.1016/j.scriptamat.2006.12.032
  20. Silverio, M., Binder, R. and De Mello, J.D.B. (2011), "Estudo Tribologico de Revestimentos de DLC Com Gases Refrigerantes HFC134A e HC600A", Tecnolem. Metale. Mater., 8, 64-72.
  21. Wilke, M., Teichert, G., Gemma, R., Pundt, A., Kirchheim, R. and Romanus, H. et al. (2011), "Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films", Thin Solid Films., 520, 1660-1667. https://doi.org/10.1016/j.tsf.2011.07.058
  22. Yang, B., Salant, R.F. and Soft, E.H.L. (2009), "Simulations of U-cup and step hydraulic rod seals", J. Tribol. - T. ASME, 131(2), 02150.
  23. Yang, L. and Martini, A. (2013), "Nano-scale roughness effects on hysteresis in micro-scale adhesive contact", Tribol. Int., 58, 40-46. https://doi.org/10.1016/j.triboint.2012.09.003
  24. Yang, L.Q. and Martini, A. (2013), "Nano-scale roughness effects on hysteresis in micro-scale adhesive contact", Tribol. Int., 58, 40-46. https://doi.org/10.1016/j.triboint.2012.09.003
  25. Zhang, Y.S., Han, Z. and Lu, K. (2008), "Fretting wear behavior of nanocrystalline surface layer of copper under dry condition", Wear, 265(5-8), 396-401. https://doi.org/10.1016/j.wear.2007.11.004