DOI QR코드

DOI QR Code

칼슘알루미네이트 시멘트 모르타르의 성능 평가

Evaluation on the Performance of Mortars Made with Calcium Aluminate Cement

  • 투고 : 2015.09.07
  • 심사 : 2015.10.30
  • 발행 : 2015.11.01

초록

본 연구에서는 칼슘알루미네이트 시멘트(CAC) 모르타르의 수화생성물, 강도, 흡수율, 표면전기 저항성 및 염소이온 침투저항성을 실험적으로 고찰하였다. CAC 모르타르의 성능은 보통포틀랜드 시멘트(OPC) 모르타르의 성능과 상호 비교되었다. 실험 결과에 따르면, CAC 모르타르의 주요 수화생성물은 $C_2AH_8$$CAH_{10}$으로 조사되었으며, 압축 및 부착강도는 OPC 모르타르에 비하여 우수하게 나타났다. 뿐만 아니라, 표면전기 저항성 및 염소이온 침투저항성도 대체적으로 좋은 결과를 나타냄으로서, CAC의 우수한 성능도 확인하였다. 그러나, CAC 모르타르의 흡수율은 초기재령부터 OPC 모르타르에 비하여 다소 크게 나타남으로써, CAC 경화체의 표면흡수 성능을 개선하기 위한 연구가 더 필요할 것으로 판단된다. 반면, CAC 및 OPC 혼용배합 모르타르의 역학적 성능은 CAC 모르타르에 비하여 대체적으로 다소 떨어지는 것으로 조사됨으로써, CAC계 경화체 제조시 주의가 요구된다.

In this study, several properties of mortars made with calcium aluminate cement (CAC) such as hydrated products, strength characteristics, absorption, surface electric resistivity and chloride ions penetration resistance were experimentally investigated. The properties of CAC mortars were compared to those of ordinary portland cement (OPC) mortars. From the test results, it was found that the main hydrated products for CAC mortars were of $C_2AH_8$ and $CAH_{10}$, while CH, ettringite and calcite for OPC mortars. The surface electric resistivity and chloride ions penetration resistance of CAC mortars were significantly beneficial compared to those of OPC mortars. However, it should be noted that the absorption properties of CAC mortars were negatively examined. Thus, it needs to have more study for the improvement of surface absorption of CAC matrices. In addition, the combined mixture of CAC and OPC were ineffective to improve some performances of mortars.

키워드

참고문헌

  1. Ann, K. Y., Kim, T. S., Lim, J. H., and Kim, S. H. (2010), The resistance of high alumina cement against corrosion of steel in concrete, Construction and Building Materials, 24(8), 1502-1510. https://doi.org/10.1016/j.conbuildmat.2010.01.022
  2. Blanco-Varelar, M. T., Martinez-Ramirez, S., Vazquez, T., and Sanchez-Moral, S. (2005), Role of alkalis of aggregate origin in the deterioration of CAC concrete, Cement and Concrete Research, 35(9), 1698-1704. https://doi.org/10.1016/j.cemconres.2004.08.015
  3. El-Hafiane, Y., Smith, A., Abouliatim, Y., Chartier, T., Nibou, L., and Bonnet, J. P. (2014), Calcium aluminate cement tapes-Part. I : Structural and microstructural characterizations, Journal of the European Ceramic Society, 34(4), 1017-1023. https://doi.org/10.1016/j.jeurceramsoc.2013.10.015
  4. Garces, P., Zornoza, E., Alcocel, E. G., Galao, O., and Andion, L. G. (2012), Mechanical properties and corrosion of CAC mortars with carbon fibers, Construction and Building Materials, 34, 91-96 https://doi.org/10.1016/j.conbuildmat.2012.02.020
  5. Gastaldini, A. L. G., Isaia, G. C., Hoppe, T. F., Missau, F., and Saciloto, A. P. (2009), Influence of the use of rice husk ash on the electrical resistivity of concrete: A technical and economic feasibility study, Construction and Building Materials, 23(11), 3411-3419. https://doi.org/10.1016/j.conbuildmat.2009.06.039
  6. Gu, P., Beaudoin, J. J., Quinn, E. G., and Myers, R. E. (1997), Early strength development and hydration of ordinary portland cement / calcium aluminate cement pastes, Advanced Cement Based Materials, 6(2), 53-58. https://doi.org/10.1016/S1065-7355(97)00008-4
  7. Kim, S. D., and Moon, D. Y. (2013), Effect of steel fiber distribution on steel fiber-reinforced concrete on surface electrical resistivity, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(1), 106-113. https://doi.org/10.11112/jksmi.2013.17.1.106
  8. Kirca, O., Yaman, O., and Tokyay, M. (2013), Compressive strength development of calcium aluminate cement-GGBFS blends, Cement and Concrete Composites, 35(1), 163-170. https://doi.org/10.1016/j.cemconcomp.2012.08.016
  9. Lamour, V. H. R., Monteiro, P. J. M., and Scrivener, K. L. (2001), Mechanical properties of calcium aluminate cement concretes, Proceedings of the International Conference on CAC, Edinburgh, UK, 199-213.
  10. Matusinovic, T., Sipusic, J., and Vrbos, N. (2003), Porosity-strength relation in calcium aluminate cement pastes, Cement and Concrete Research, 33(11), 1801-1806. https://doi.org/10.1016/S0008-8846(03)00201-1
  11. Mostafa, N. Y., Zaki, Z. I., and Elkader, O. H. A. (2012), Chemical activation of calcium aluminate cement composites cured at elevated temperature, Cement and Concrete Composites, 34(10), 1187-1193. https://doi.org/10.1016/j.cemconcomp.2012.08.002
  12. Older, I. (2000), Special inorganic cements, E&FN Spoon Publication, New York, 123-126.
  13. Presuel-Moreno, F., Wu, Y. Y., and Liu, Y. (2013), Effect of curing regime on concrete resistivity and aging factor over time, Construction and Building Materials, 48, 874-882. https://doi.org/10.1016/j.conbuildmat.2013.07.094
  14. Ramezanianpour, A. A., Pilvar, A., Mahdikhani, M., and Moodi, F. (2011), Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength, Construction and Building Materials, 25(5), 2472-2479. https://doi.org/10.1016/j.conbuildmat.2010.11.069
  15. Scrivener, K. L., Cabiron, J. L., and Letourneux, R. (1999), Highperformance concretes from calcium aluminate cements, Cement and Concrete Research, 29(8), 1215-1223. https://doi.org/10.1016/S0008-8846(99)00103-9
  16. Sengul, O. (2014), Use of electrical resistivity as an indicator for durability, Construction and Building Materials, 73, 434-441. https://doi.org/10.1016/j.conbuildmat.2014.09.077
  17. Sengul, O., and Gjorv, O. E. (2009), Effect of embedded steel on electrical resistivity measurements on concrete structures, ACI Materials Journal, 106(1), 11-18.
  18. Xu, L., Wang, P., and Zhang, G. (2012), Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures, Construction and Building Materials, 31, 347-352. https://doi.org/10.1016/j.conbuildmat.2011.12.078
  19. Zain, M. F. M., Safiuddin, Md., and Mahmud, H. (2000), Development of high performance concrete using silica fume at relatively high water-binder ratios, Cement and Concrete Research, 30(9), 1501-1505. https://doi.org/10.1016/S0008-8846(00)00359-8