DOI QR코드

DOI QR Code

더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper

  • 투고 : 2014.12.15
  • 심사 : 2015.08.24
  • 발행 : 2015.11.01

초록

본 연구에서는 내진설계 이전에 지어진 학교 건물을 대상으로 내진보강효과를 알아보기 위하여 벽체로 지지되는 강재이력형 감쇠장치를 설치하여 기존 비내진 설계된 보강 RC골조 실험결과와 비교 분석하였다. 실험결과, 비내진 설계된 실험체는 좌 우측 기둥의 상 하부에 피해가 집중되면서 급격한 강도저하와 함께 취성적인 전단파괴의 양상을 나타낸 반면, 더블 I형 감쇠장치를 보강한 실험체는 감쇠장치 보강으로 강도 및 강성의 증가와 함께 탄소성 거동을 보이면서 에너지 흡수 능력이 큰 타원형의 이력특성을 나타내었다. 또한, 두 실험체의 강성저하를 비교한 결과 더블 I형 감쇠장치를 보강한 실험체가 강성저하를 방지하는데도 효과적임을 알 수 있었다. 에너지소산능력도 더블 I형 감쇠장치를 보강한 실험체가 비보강 실험체에 비해 약 3.5배의 향상된 결과를 나타내었다. 이러한 에너지소산능력의 증진은 내력과 변형 능력의 증진에 따른 결과라고 사료된다.

In this study, to examine seismic reinforcement effect of a school building constructed prior to application of seismic design, a Double I-type damper supported by wall was installed to perform comparative analysis on existing non-seismic designed RC frame. As a result of experiment, while non-seismic designed specimen showed rapid reduction in strength and brittle shear destruction as damages were focused on top and bottom of left and right columns, reinforced specimen showed hysteretic characteristics of a large ellipse with great energy absorption ability, exhibiting perfectly behavior with increased strength and stiffness from damper reinforcement. In addition, as a result of comparing stiffness reduction between the two specimens, specimen reinforced by shear wall type damper was effective in preventing stiffness reduction. Energy dissipation ability of specimen reinforced by Double I-type damper was about 3.5 times as high as energy dissipation ability of non-reinforced specimen. Such enhancement in energy dissipation ability is considered to be the result of improved strength and deformation.

키워드

참고문헌

  1. KBC, Korean Building and Commentary (2009), Architectural Institute of Korea, 88-90.
  2. Hur, M. W., Chun, Y. S., Hwang, J. S., and Park, S. C., (2014), Seismic Capacity of RC Framed Building Retrofitted by Double I-type Metallic Damper, KCI, Spring 2014 Convention, 1039-1040.
  3. Baek, E. L., Oh, S. H., and Lee, S. H., (2014), Seismic Performance of an Existing Low-Rise Reinforced Concrete Piloti Building Retrofitted by Steel Rod Damper, Journal of EESK, 18(5), 241-251.
  4. Oh, S. H., Kim, Y. J., Tyu, H. S., Choi, H. B., and Kang, C. H., (2005), Hysteresis Behavior of Beam-to-Column Connections with Elasto-Plastic Hysteretic Dampers, Architectural Institute of Korea, 25(1), 635-638.
  5. Lee, H. H., (2012), Hysteretic Behaviors of Metallic Dampers with the Various Slit Shape, Journal of Korea institute for Structural Maintenance Inspection, 16(2), 206-207.
  6. Lee, H. H., Kim, S. I., (2011), Hysteretic Behaviors of Metallic Dampers with the Various Slit Shape, Journal of Korea institute for Structural Maintenance Inspection, 15(5), 199-208. https://doi.org/10.11112/jksmi.2011.15.5.199
  7. Lee, H. Ho., Kim, S. I., (2010), Metalic Damper Shape and Cyclic Behavior for the Seismic Capacity Improvement of Building Structures, Journal of Korea institute for Structural Maintenance Inspection, 14(3), 123-130.
  8. Japan Building Disaster Prevention Association, (2001), Standard for Damage Level Classification, Tokyo, Japan, 250.
  9. ACI Committee 374, (2014), Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, ACI 374.1-5.