DOI QR코드

DOI QR Code

Numerical Study on the Characteristics of Dual-Mode Scramjet Isolator

이중 모드 스크램제트 격리부 특성에 대한 수치해석적 연구

  • Deng, Ruoyu (Department of Mechanical Engineering, Andong National University) ;
  • Kim, Heuy Dong (Department of Mechanical Engineering, Andong National University) ;
  • Jin, Yingzi (College of Mechanical Engineering & Automation, Zhejiang Sci-Tech University)
  • Received : 2015.06.02
  • Accepted : 2015.08.24
  • Published : 2015.10.01

Abstract

As one of the most promising propulsive systems in the future, the dual-mode scramjet engine has drawn the attention of many researches. Detailed flow features concerned with the isolator play an important role in the dual-mode scramjet system. The 2D numerical method has been used for the dual-mode scramjet with wind tunnel. To validate the ability of the numerical model, numerical results have been compared with the experimental results. Overall pressure distributions show quite good match with the experimental results. Back pressure has been studied for maximum pressure rising. According to the results, pressure distribution of supersonic inlet section is not influenced by back pressure. The shock train is pushed towards upstream as the back pressure increases. The maximum value of back pressure without inlet unstart goes up rapidly and then keeps constant when the isolator length increases. The optimal length of isolator section ($L/H_{th}$) is 8.7 in this model.

이중 모드 스크램제트 엔진은 미래 가장 촉망받는 시스템 중 하나로, 많은 연구자들에게 각광받고 있다. 이중 모드 스크램제트 엔진 시스템에서 격리부와 관련된 유동 특징들은 중요한 역할을 한다. 본 연구에서 풍동을 가진 이중 모드 스크램제트 엔진을 조사하기 위해 2차원 수치해석을 수행하였다. 계산방법의 타당성을 검증하기 위하여 실험결과와 비교하였으며, 수치해석 결과는 실험값과 비교하여 전체적으로 압력 분포가 잘 일치하였다. 배압은 최대 압력 상승을 분석하기 위해 연구되었다. 그 결과 초음속 흡입구 영역의 압력 분포는 배압에 영향을 받지 않았으며, 배압이 증가함에 따라 Shock train은 상류 쪽으로 밀려나갔다. 격리부의 길이가 증가함에 따라 최대 배압값은 입구 불시동 없이 급격히 증가한 후 일정하게 유지되었으며, 격리부 영역의 최적 길이($L/H_{th}$)는 8.7이다.

Keywords

References

  1. Matsuo, K., Miyazato, Y. and Kim, H.D., "Shock Train and Pseudo-shock Phenomena in Internal Gas Flows," Progress in Aerospace Sciences, Vol. 35, No. 1, pp. 33-100, 1999. https://doi.org/10.1016/S0376-0421(98)00011-6
  2. Lin, K.C., Tam, C.J., Jackson, K., Kennedy, P. and Behdadnia, R., "Experimental Investigations on Simple Variable Geometry for Improving Scramjet Isolator Performance," 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, O.H., USA, AIAA 2007-5378, 2007.
  3. Tam, C.J., Lin, K.C., Davis, D.L. and Behdadnia, R., "Numerical Investigations on Simple Variable Geometry for Improving Scramjet Isolator Performance," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, C.A., USA, AIAA 2006-4509, 2006.
  4. Emami, S., Trexler, C.A., Auslender, A.H. and Weidner, J.P., "Experimental Investigation of Inlet-combustor Isolators for a Dual-mode Scramjet at a Mach Number of 4," NASA TP 3502, 1995.
  5. Lin, K.C., Tam, C.J., Eklund, D.R., Jackson, K.R. and Jackson, T.A., "Effects of Temperature and Heat Transfer on Shock Train Structures inside Constant-area Isolators," 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, N.V., USA, AIAA 2006-817, Jan. 2006.
  6. Allen, J.B., Hauser, T. and Tam, C.J., "Numerical Simulations of a Scramjet Isolator using RANS and LES Approaches," 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, N.V., USA, AIAA 2007-115, Jan. 2007.
  7. Tam, C.J., Eklund, D. and Behdadnia, R., "Influence of Downstream Boundary Conditions on Scramjet-isolator Simulations," 26th AIAA Applied Aerodynamics Conference, Honolulu, H.I., USA, AIAA 2008-6929, Aug. 2008.

Cited by

  1. Optimization study on the isolator length of dual-mode scramjet vol.31, pp.2, 2017, https://doi.org/10.1007/s12206-017-0121-5