References
- Banerjee, M.K. (2015), "Microstructural engineering of dual phase steel to aid in bake hardening", Adv.Mater. Res., 4(1), 1-12. https://doi.org/10.12989/amr.2015.4.1.1
- Biot, M.N. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
- Chadwick, P. (1960), In Progress In Solid Mechanics, Vol. I, Eds. R. Hill and I.N. Sneddon, North Holland, Amsterdam.
- Chakravorty, S. and Chakravorty, A. (1998), "Transient disturbances in a relaxing thermoelastic half space due to moving stable internal heat source", Int. J. Math. Math. Sci., 21, 595-602. https://doi.org/10.1155/S0161171298000829
- Chandrasekharaiah, D.S. (1986), "Thermo-elasticity with second sound", Appl. Mech. Rev., 39(3), 355-375. https://doi.org/10.1115/1.3143705
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermo-elasticity: a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984
- Chandrasekharaiah, D.S and Murthy, H.N. (1993), "Thermoelastic interactions in an unbounded body with a spherical cavity", J. Therm. Stress., 16, 55-70. https://doi.org/10.1080/01495739308946216
- Chandrasekharaiah, D.S. and Srinath, K.S. (1996), "One-dimensional waves in a thermoelastic half-space without energy dissipation", Int. J. Eng. Sci., 34(13), 1447-1455. https://doi.org/10.1016/0020-7225(96)00034-1
- Dhaliwal, R.S and Rokne, J.G. (1988), "One-dimensional generalized thermo-elastic problem for a half-space", J. Therm. Stress., 11, 257-271. https://doi.org/10.1080/01495738808961935
- Dhaliwal, R.S. and Rokne, J.G. (1989), "One-dimensional thermal shock problem with two relaxation times", J. Therm. Stress., 12, 259-279. https://doi.org/10.1080/01495738908961965
- El-Karamany, A.S. and Ezzat, M.A. (2014), "On the dual phase-lag thermoelasticity theory", Meccanica, 49, 79-89. https://doi.org/10.1007/s11012-013-9774-z
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Green, A.E. and Naghdi, P.M. (1977), "On thermodynamics and the nature of the second law", Proc. R. Soc. Lond. A, 357, 253-270. https://doi.org/10.1098/rspa.1977.0166
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969
- Ignaczak, J. (1989), In Thermal Stresses, Vol. III, Chap. 4, Ed. R.B. Hetnarski, Elsevier, Oxford.
- Kaminski, W. (1990), "Hyperbolic heat conduction equation for materials with a non-homogenous inner structure", J. Heat Transf., 112, 555-560. https://doi.org/10.1115/1.2910422
- Kothari, S. and Mukhopadhyay, S. (2013), "Some theorems in linear thermoelasticity with dual phase-lags for an anisotropic medium", J. Thermal. Stress., 36, 985-1000. https://doi.org/10.1080/01495739.2013.788896
- Kumar, R. and Devi, S. (2008), "Thermomechanical interactions in porous generalized thermoelastic material permeated with heat source", Multidisc. Model. Mater. Struct., 4, 237-254. https://doi.org/10.1163/157361108784890679
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Lotfy, K. (2010), "Transient disturbance in a half-space under generalized magneto-thermoelasticity with a stable internal heat source under three theories", Multidisc. Model. Mater. Struct., 7, 73-90.
- Lotfy, K. (2011), "Transient thermo-elastic disturbances in a visco-elastic semi-space due to moving internal heat source", Int. J. Struct. Intg., 2, 264 - 280. https://doi.org/10.1108/17579861111162879
- Mitra, K., Kumar, S. and Vedaverz, A. (1995), "Experimental evidence of hyperbolic heat conduction in processed meat", J. Heat Transf., 117, 568-573. https://doi.org/10.1115/1.2822615
- Othman, M.I.A. (2011), "State space approach to the generalized thermoelastic problem with temperature-dependent elastic moduli and internal heat sources", J. Appl. Mech. Tech., 52, 644-656. https://doi.org/10.1134/S0021894411040183
- Ozisik, M.N. and Tzou, D.Y. (1994), "On the wave theory of heat conduction", J. Heat Transf., ASME, 116, 526-535. https://doi.org/10.1115/1.2910903
- Roy Chaudhuri, S.K. and Debnath, L. (1983), "Magneto- thermo-elastic plane waves in rotating media", Int. J. Eng. Sci., 21(2), 155-163. https://doi.org/10.1016/0020-7225(83)90007-1
- Roy Chaudhuri, S.K. (1984), "Electro-megneto-thermo-elastic plane waves in rotating media with thermal relaxation", Int. J. Eng. Sci., 22(5), 519-530. https://doi.org/10.1016/0020-7225(84)90054-5
- Roy Chaudhuri, S.K. (1985), "Effect of rotation and relaxation times on plane waves in generalized thermoelasticity", J. Elasticity, 15(1), 59-68. https://doi.org/10.1007/BF00041305
- Roy Chaudhuri, S.K. (1987), "On magneto thermo-elastic plane waves in infinite rotating media with thermal relaxation", Proceedings Of The IUTAM Symposium On The Electromagnetomechanical Interactions In Deformable Solids and Structures, Tokyo.
- Roy Chaudhuri, S.K. (1990), "Magneto-thermo-micro-elastic plane waves in finitely conducting solids with thermal relaxation", Proceedings of the IUTAM Symposium On Mechanical Modeling of New Electromagnetic Materials, Stockholm.
- Roy Chaudhuri, S.K. and Dutta, P.S. (2005), "Thermo-elastic interaction without energy dissipation in an infinite solid with distributed periodically varing heat sources", Int. J. Solid. Struct., 42(14), 4192-4203. https://doi.org/10.1016/j.ijsolstr.2004.12.013
- Roy Chaudhuri, S.K. and Bandyopadhyay, N. (2005), "Thermoelastic wave propagation in a rotating elastic medium without energy dissipation", Int. J. Math. Math. Sci., 1, 99-107.
- Roy Chaudhuri, S.K. and Banerjee, M. (2004), "Magnetoelastic plane waves in rotating media in thermoelasticity of Type II(G-N model)", Int. J. Math. Math. Sci., 71, 3917-3929.
- Tzou, D.Y. (1995), "Experimental support for the lagging behaviour in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725
- Tzou, D.Y. (1995), "A unified approach for heat conduction from macro to microscale", J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329
Cited by
- Thermal stresses in a non-homogeneous orthotropic infinite cylinder vol.59, pp.5, 2016, https://doi.org/10.12989/sem.2016.59.5.841
- Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium vol.68, pp.2, 2018, https://doi.org/10.12989/sem.2018.68.2.215
- 2-D Analysis of Generalized Thermoelastic Porous Medium under the Effect of Laser Pulse and Microtemperature vol.21, pp.9, 2015, https://doi.org/10.1142/s0219455421501261