DOI QR코드

DOI QR Code

Disturbance due to internal heat source in thermoelastic solid using dual phase lag model

  • Ailawalia, Praveen (Department of Applied Sciences, MM University) ;
  • Singla, Amit (Department of Mathematics, Baba Banda Singh Bahadur Engineering College)
  • Received : 2013.01.28
  • Accepted : 2015.10.20
  • Published : 2015.11.10

Abstract

The dual-phase lag heat transfer model is employed to study the problem of isotropic generalized thermoelastic medium with internal heat source. The normal mode analysis is used to obtain the exact expressions for displacement components, force stress and temperature distribution. The variations of the considered variables through the horizontal distance are illustrated graphically. The results are discussed and depicted graphically.

Keywords

References

  1. Banerjee, M.K. (2015), "Microstructural engineering of dual phase steel to aid in bake hardening", Adv.Mater. Res., 4(1), 1-12. https://doi.org/10.12989/amr.2015.4.1.1
  2. Biot, M.N. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
  3. Chadwick, P. (1960), In Progress In Solid Mechanics, Vol. I, Eds. R. Hill and I.N. Sneddon, North Holland, Amsterdam.
  4. Chakravorty, S. and Chakravorty, A. (1998), "Transient disturbances in a relaxing thermoelastic half space due to moving stable internal heat source", Int. J. Math. Math. Sci., 21, 595-602. https://doi.org/10.1155/S0161171298000829
  5. Chandrasekharaiah, D.S. (1986), "Thermo-elasticity with second sound", Appl. Mech. Rev., 39(3), 355-375. https://doi.org/10.1115/1.3143705
  6. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermo-elasticity: a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984
  7. Chandrasekharaiah, D.S and Murthy, H.N. (1993), "Thermoelastic interactions in an unbounded body with a spherical cavity", J. Therm. Stress., 16, 55-70. https://doi.org/10.1080/01495739308946216
  8. Chandrasekharaiah, D.S. and Srinath, K.S. (1996), "One-dimensional waves in a thermoelastic half-space without energy dissipation", Int. J. Eng. Sci., 34(13), 1447-1455. https://doi.org/10.1016/0020-7225(96)00034-1
  9. Dhaliwal, R.S and Rokne, J.G. (1988), "One-dimensional generalized thermo-elastic problem for a half-space", J. Therm. Stress., 11, 257-271. https://doi.org/10.1080/01495738808961935
  10. Dhaliwal, R.S. and Rokne, J.G. (1989), "One-dimensional thermal shock problem with two relaxation times", J. Therm. Stress., 12, 259-279. https://doi.org/10.1080/01495738908961965
  11. El-Karamany, A.S. and Ezzat, M.A. (2014), "On the dual phase-lag thermoelasticity theory", Meccanica, 49, 79-89. https://doi.org/10.1007/s11012-013-9774-z
  12. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689
  13. Green, A.E. and Naghdi, P.M. (1977), "On thermodynamics and the nature of the second law", Proc. R. Soc. Lond. A, 357, 253-270. https://doi.org/10.1098/rspa.1977.0166
  14. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136
  15. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969
  16. Ignaczak, J. (1989), In Thermal Stresses, Vol. III, Chap. 4, Ed. R.B. Hetnarski, Elsevier, Oxford.
  17. Kaminski, W. (1990), "Hyperbolic heat conduction equation for materials with a non-homogenous inner structure", J. Heat Transf., 112, 555-560. https://doi.org/10.1115/1.2910422
  18. Kothari, S. and Mukhopadhyay, S. (2013), "Some theorems in linear thermoelasticity with dual phase-lags for an anisotropic medium", J. Thermal. Stress., 36, 985-1000. https://doi.org/10.1080/01495739.2013.788896
  19. Kumar, R. and Devi, S. (2008), "Thermomechanical interactions in porous generalized thermoelastic material permeated with heat source", Multidisc. Model. Mater. Struct., 4, 237-254. https://doi.org/10.1163/157361108784890679
  20. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  21. Lotfy, K. (2010), "Transient disturbance in a half-space under generalized magneto-thermoelasticity with a stable internal heat source under three theories", Multidisc. Model. Mater. Struct., 7, 73-90.
  22. Lotfy, K. (2011), "Transient thermo-elastic disturbances in a visco-elastic semi-space due to moving internal heat source", Int. J. Struct. Intg., 2, 264 - 280. https://doi.org/10.1108/17579861111162879
  23. Mitra, K., Kumar, S. and Vedaverz, A. (1995), "Experimental evidence of hyperbolic heat conduction in processed meat", J. Heat Transf., 117, 568-573. https://doi.org/10.1115/1.2822615
  24. Othman, M.I.A. (2011), "State space approach to the generalized thermoelastic problem with temperature-dependent elastic moduli and internal heat sources", J. Appl. Mech. Tech., 52, 644-656. https://doi.org/10.1134/S0021894411040183
  25. Ozisik, M.N. and Tzou, D.Y. (1994), "On the wave theory of heat conduction", J. Heat Transf., ASME, 116, 526-535. https://doi.org/10.1115/1.2910903
  26. Roy Chaudhuri, S.K. and Debnath, L. (1983), "Magneto- thermo-elastic plane waves in rotating media", Int. J. Eng. Sci., 21(2), 155-163. https://doi.org/10.1016/0020-7225(83)90007-1
  27. Roy Chaudhuri, S.K. (1984), "Electro-megneto-thermo-elastic plane waves in rotating media with thermal relaxation", Int. J. Eng. Sci., 22(5), 519-530. https://doi.org/10.1016/0020-7225(84)90054-5
  28. Roy Chaudhuri, S.K. (1985), "Effect of rotation and relaxation times on plane waves in generalized thermoelasticity", J. Elasticity, 15(1), 59-68. https://doi.org/10.1007/BF00041305
  29. Roy Chaudhuri, S.K. (1987), "On magneto thermo-elastic plane waves in infinite rotating media with thermal relaxation", Proceedings Of The IUTAM Symposium On The Electromagnetomechanical Interactions In Deformable Solids and Structures, Tokyo.
  30. Roy Chaudhuri, S.K. (1990), "Magneto-thermo-micro-elastic plane waves in finitely conducting solids with thermal relaxation", Proceedings of the IUTAM Symposium On Mechanical Modeling of New Electromagnetic Materials, Stockholm.
  31. Roy Chaudhuri, S.K. and Dutta, P.S. (2005), "Thermo-elastic interaction without energy dissipation in an infinite solid with distributed periodically varing heat sources", Int. J. Solid. Struct., 42(14), 4192-4203. https://doi.org/10.1016/j.ijsolstr.2004.12.013
  32. Roy Chaudhuri, S.K. and Bandyopadhyay, N. (2005), "Thermoelastic wave propagation in a rotating elastic medium without energy dissipation", Int. J. Math. Math. Sci., 1, 99-107.
  33. Roy Chaudhuri, S.K. and Banerjee, M. (2004), "Magnetoelastic plane waves in rotating media in thermoelasticity of Type II(G-N model)", Int. J. Math. Math. Sci., 71, 3917-3929.
  34. Tzou, D.Y. (1995), "Experimental support for the lagging behaviour in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725
  35. Tzou, D.Y. (1995), "A unified approach for heat conduction from macro to microscale", J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329

Cited by

  1. Thermal stresses in a non-homogeneous orthotropic infinite cylinder vol.59, pp.5, 2016, https://doi.org/10.12989/sem.2016.59.5.841
  2. Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium vol.68, pp.2, 2018, https://doi.org/10.12989/sem.2018.68.2.215
  3. 2-D Analysis of Generalized Thermoelastic Porous Medium under the Effect of Laser Pulse and Microtemperature vol.21, pp.9, 2015, https://doi.org/10.1142/s0219455421501261