DOI QR코드

DOI QR Code

Determination of Degraded Properties of Vibrating Laminated Composite Plates for Different Layup Sequences

적층배열 변화에 따른 진동하는 복합재료 적층 구조의 미시역학적 물성변화 추정

  • Kim, Gyu-Dong (Department of Civil Engineering, Andong National University) ;
  • Lee, Sang-Youl (Department of Civil Engineering, Andong National University)
  • Received : 2015.09.30
  • Accepted : 2015.10.29
  • Published : 2015.10.31

Abstract

This paper presents a method to detect the fiber property variation of laminated GFRP plates from natural frequency response data. The combined finite element analysis using ABAQUS and the inverse algorithm described in this paper may allow us not only to detect the deteriorated elements from the mirco-mechanical point of view but also to find their numbers, locations, and the extent of damage. To solve the inverse problem using the combined method, this study uses several natural frequencies instead of mode shapes in a structure as the measured data. Several numerical results show that the proposed system is computationally efficient in identifying fiber stiffness degradation for complex structures such as composites with various layup sequences.

본 연구의 목적은 고유진동 응답데이터로부터 적층된 GFRP 판구조의 섬유 물성 변화를 추정하는 것이다. 고등유한요소 상용프로그램(ABAQUS)와 연동된 알고리즘은 미시역학적 관점에서 손상된 요소를 추정할 뿐만 아니라 위치, 개수 및 정도를 탐색할 수 있다. 연동된 기법을 적용하여 역문제를 해결하기 위하여 본 연구에서는 모드형상 대신 제한된 몇 개의 고유진동수 데이터만을 적용하였다. 몇가지 수치해석 결과로부터 제안된 시스템 기법은 다양한 적층배열을 갖는 복합재료 적층판과 같은 복잡한 구조물의 섬유 강성 변화를 추정하는 데 수치해석적으로 효율적임을 보여준다.

Keywords

References

  1. Krawczuk, M., "Application of Spectral Beam Finite Element with a Crack and Iterative Search Technique for Damage Detection", Finite Elements in Analysis and Design, Vol. 38, 2002, pp. 537-548. https://doi.org/10.1016/S0168-874X(01)00084-1
  2. Yang, J.C.S., Tsai, T., Pavlin, V., Chen, J., and Tsai, W. H., "Structural Damage Detection by the System Identification Technique", Shock and Vibration, Vol. 55, 1985, pp. 57-68.
  3. Rizos, P.F., Aspragathos, N., and Dimarogonas, A.D., "Identification of Crack Location and Magnitude in a Cantilever Beam from the Vibration Modes", J. Sound and Vibration, Vol. 138, 1990, pp. 381-388. https://doi.org/10.1016/0022-460X(90)90593-O
  4. Ostachowicz, W.M. and Krawczuk, M., "Analysis of the Effect of Cracks on the Natural Frequencies of a Cantilever Beam", J. Sound and Vibration, Vol. 150, 1991, pp. 191-201. https://doi.org/10.1016/0022-460X(91)90615-Q
  5. Ruotolo, R. and Shifrin, E.I., "Natural Frequencies of a Beam with Arbitrary Number of Cracks", J. Sound and Vibration, Vol. 222, No. 3, 1999, pp. 409-423. https://doi.org/10.1006/jsvi.1998.2083
  6. Salawu, O.S., "Detection of Structural Damage through Change in Frequency: A Review", Engng. Struct., Vol. 19, No. 9, 1997, pp. 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  7. Morassi, A. and Rollo, M., "Identification of Two Cracks in a Simply Supported Beam from Minimal Frequency Measurements," J. Sound and Vibration, Vol. 7, 2001, pp. 729-739.
  8. Holland, "Adaptation in Natural and Artificial Systems", Bradford Book, The MIT Press, Cambridge, MA, 1991.
  9. Chou, J.H. and Ghaboussi, J., "Genetic Algorithm in Structural Damage Detection", Comput. Struct., Vol. 79, 2001, pp. 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X
  10. Au, F.T.K., Cheng, Y.S., Tham, L.G., and Bai, Z., "Structural Damage Detection Based on a Micro-genetic Algorithm Using Incomplete and Noisy Modal Test Data", J. Sound and Vibration, Vol. 259, No. 5, 2003, pp. 1081-1094. https://doi.org/10.1006/jsvi.2002.5116
  11. Gudmudson, P., "The Dynamic Behaviors of Slender Structures with Cross Section Cracks", J. Mech. and Phys. of Solids, Vol. 31, No. 4, 1982, pp. 329-345. https://doi.org/10.1016/0022-5096(83)90003-0
  12. Christides, S. and Barr, A.D.S., "One-dimensional Theory of Cracked Bernulli-Euler Beams", I. J. Mechanics and Science, Vol. 26, No. 11/12, 1984, pp. 639-648. https://doi.org/10.1016/0020-7403(84)90017-1
  13. Hewitt R.L. and Malherbe, M.C., "An Approximation for the Longitudinal Shear Modulus of Continuous Fiber Composites", Journal of Composite Materials, 1970, pp. 280-282.
  14. Kim G.D., Rus G., and Lee S.Y., "Natural Frequency and Mode Characteristics of Composite Pole Structures for Different Layup Sequences", Journal of Korean Society for Advanced Composite Structures, Vol. 4, No. 1, 2013, pp. 9-14 (in Korean). https://doi.org/10.11004/kosacs.2013.4.1.009

Cited by

  1. Determination of Degraded Fiber Properties of Laminated CFRP Flat Plates Using the Bivariate Gaussian Distribution Function vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.299
  2. Nonlinear Finite Element Crash Analysis of Guardrail Structures Using Supports Made of Composite Materials vol.29, pp.6, 2016, https://doi.org/10.7234/composres.2016.29.6.363