DOI QR코드

DOI QR Code

The Effects of Breeding Environment Adjustment in FABP4 Gene Identification of Korean Cattle

한우의 FABP4 유전자 선별에서 사육환경 보정 효과

  • Received : 2015.04.16
  • Accepted : 2015.08.21
  • Published : 2015.10.31

Abstract

Economic-traits of livestock are affected by environmental and genetic factors. We are interested in genetic factors that influence the economic-traits of Korean cattle. It is necessary to adjust environmental factors in order to enhance the accuracy of the genetic effect analysis. In this paper, we propose a statistical model of Korean cattle that exclude environmental breeding farm and age factors. We formulated an adjusted economic-trait value, and applied multifactor dimensionality reduction (MDR) method to data of before-and-after adjustment to identify major FABP4 genes. We were able to increase the accuracy of the analysis after adjustment and identify superior FABP4 genes that influence grade and fatty acid.

가축의 경제적인 특성은 환경적인 요인과 유전적인 요인의 영향을 복합적으로 받는다. 우리는 한우의 경제적 특성에 영향을 미치는 유전적인 요인에 관심이 있으며, 우리의 목적은 경제형질에서 환경적인 요인을 보정하여 유전효과를 더욱 정확하게 검증하는 것이다. 본 연구에서는 환경적인 요인과 유전적인 요인으로 구성된 통계모형을 구축하고, 이 모형에서 환경적인 요인인 사육농가의 효과와 도축일령의 효과를 제거하여 보정된 경제형질값을 구한다. 그리고 보정 전 후 경제형질값을 다중인자차원축소 방법에 적용하여 각각의 우수 유전자와 유전자조합을 선별하고, 정확도를 비교한다. 그 결과, 우리는 환경요인을 보정한 경제형질값을 활용하여 우수 유전자 선별의 정확도를 높였고, 한우의 등급과 지방산과 깊은 연관이 있는 우수한 FABP4 유전자를 선별하였다.

Keywords

References

  1. Blumer, T. N. (1963). Relationship of marbling to the palatability of beef, Journal of Animal Science, 22, 771-778. https://doi.org/10.2527/jas1963.223771x
  2. Casas, E., White, S. N., Riley, D. G., Smith, T. P. L., Brenneman, R. A., Olson, T. A., Johnson, D. D., Coleman, S. W., Bennett, G. L. and Chase, C. C. (2005). Assessment of single nucleotide polymorphisms in genes residing on choromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle, Journal of Animal Science, 83, 13-19. https://doi.org/10.2527/2005.83113x
  3. Chmurzynska, A. (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism, Journal of Applied Genetics, 47, 39-48. https://doi.org/10.1007/BF03194597
  4. Damcotta, C. M., Moffetta, S. P., Feingolda, E., Barmadaa, M. M., Marshallb, J. A., Hammanb, R. F. and Ferrella, R. E. (2004). Genetic variation in fatty acid-binding protein-4 and peroxisome proliferator-activated receptor ${\gamma}$ interactively influence insulin sensitivity and body composition in males, Metabolism, 53, 303-309. https://doi.org/10.1016/j.metabol.2003.10.010
  5. Lee, J. Y., Kwon, J. C. and Kim, J. J. (2008). Multifactor dimensionality reduction (MDR) analysis to detect single nucleotide polymorphisms associated with a carcass trait in a Hanwoo population, Asian Australasian Journal of Animal Sciences, 21, 784-788. https://doi.org/10.5713/ajas.2008.70645
  6. Lee, J. Y. and Lee, H. G. (2009). Multifactor Dimensionality Reduction (MDR) Analysis by Dummy Variables, The Korean Journal of Applied Statistics, 22, 435-442. https://doi.org/10.5351/KJAS.2009.22.2.435
  7. Lee, J. Y. and Lee, J. H. (2010). Support vector machine and multifactor dimensionality reduction for detecting major gene interactions of continuous data, Journal of the Korean Data & Information Science Society, 21, 1271-1280.
  8. Mandell, I. B., Buchanan-Smith, J. G. and Campbell, C. P. (1998). Effects of forage vs grain feeding on carcass characteristics, fatty acid composition, and beef quality in Limousin-cross steers when time on feed is controlled, Journal of Animal Science, 76, 2619-2630. https://doi.org/10.2527/1998.76102619x
  9. Matsuhashi, T., Maruyama, S., Uemoto, Y., Kobayashi, N., Mannen, H., Abe, T., Sakaguchi, S. and Kobayashi, E. (2011). Effects of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth ghormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle, Journal of Animal Science, 89, 12-22. https://doi.org/10.2527/jas.2010-3121
  10. Melton, S. L., Amiri, M., Davis, G. W. and Backus, W. R. (1982). Flavor and chemical characteristics of ground beef from grass-, forage-grain-and grain-finished steers, Journal of Animal Science, 55, 77-87. https://doi.org/10.2527/jas1982.55177x
  11. Oh, D. Y. (2014). Identification of the SNP (single nucleotide polymorphism) whithin candidate gene associated with fatty composition in Hanwoo, Ph. D. Thesis, Yeungnam University.
  12. Oh, D. Y., Lee, Y. S., La, B. M., Yeo, J. S., Chung, E. Y., Kim, Y. Y. and Lee, C. Y. (2011). Fatty acid composition of beef is associated with exonic nucleotide variants of the gene encoding FASN, Molecular Biology Reports, 39, 4083-4090.
  13. Oh, D. Y., Lee, Y. S. and Yeo, J. S. (2012). Identification of the SNP (single nucleotide polymorphism) for fatty acid composition associated with beef flavor-related FABP4 (fatty acid binding protein 4) in Korean cattle, Asian Australasian Journal of Animal Sciences, 24, 757-765.
  14. Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F. and Moore, J. H. (2001). Multifactor dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer, The American Society of Human Genetics, 69, 138-147. https://doi.org/10.1086/321276
  15. Sturdivant, C. A., Lunt, D. K., Smith, G. C. and Smith, S. B. (1991). Fatty acid composition of subcutaneous and intramuscular adipose tissues and M. longissimus dorsi of Wagyu cattle, Meat Science, 32, 449-458.