DOI QR코드

DOI QR Code

High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8+ T Cell Activation

  • Received : 2015.06.11
  • Accepted : 2015.10.01
  • Published : 2015.10.31

Abstract

During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on $CD8^+$ T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential.

Keywords

References

  1. Ahn, B.-H., Kim, H.-S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.-X., and Finkel, T. (2008). A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 105, 14447-14452. https://doi.org/10.1073/pnas.0803790105
  2. Beiqing, L., Chen, M., and Whisler, R.L. (1996). Sublethal levels of oxidative stress stimulate transcriptional activation of c-jun and suppress IL-2 promoter activation in Jurkat T cells. J. Immunol. 157, 160-169.
  3. Bell, B.D., Leverrier, S., Weist, B.M., Newton, R.H., Arechiga, A.F., Luhrs, K.A., Morrissette, N.S., and Walsh, C.M. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc. Natl. Acad. Sci. USA 105, 16677-16682. https://doi.org/10.1073/pnas.0808597105
  4. Bjorkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603-614. https://doi.org/10.1083/jcb.200507002
  5. Brennan, P., Babbage, J.W., Burgering, B.M.T., Groner, B., Reif, K., and Cantrell, D.A. (1997). Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7, 679-689. https://doi.org/10.1016/S1074-7613(00)80388-X
  6. Brenner, D., Krammer, P.H., and Arnold, R. (2008). Concepts of activated T cell death. Crit. Rev. Oncol. Hematol. 66, 52-64. https://doi.org/10.1016/j.critrevonc.2008.01.002
  7. Chong, Z.-Z., Lin, S.-H., Li, F., and Maiese, K. (2005). The sirtuin inhibitor nicotinamide enhances neuronal cell survival during acute anoxic injury through AKT, BAD, PARP, and mitochondrial associated "anti-apoptotic" pathways. Curr. Neurovasc. Res. 2, 271-285. https://doi.org/10.2174/156720205774322584
  8. Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233-249. https://doi.org/10.1042/bj3410233
  9. D'Souza, A.D., Parikh, N., Kaech, S.M., and Shadel, G.S. (2007). Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion 7, 374-385. https://doi.org/10.1016/j.mito.2007.08.001
  10. Effros, R.B., Dagarag, M., Spaulding, C., and Man, J. (2005). The role of CD8 T-cell replicative senescence in human aging. Immunol. Rev. 205, 147-157. https://doi.org/10.1111/j.0105-2896.2005.00259.x
  11. Giannakou, M.E., and Partridge, L. (2004). The interaction between FOXO and SIRT1: Tipping the balance towards survival. Trends Cell Biol. 14, 408-412. https://doi.org/10.1016/j.tcb.2004.07.006
  12. Gomes, L.C., and Scorrano, L. (2013). Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta. 1833, 205-212. https://doi.org/10.1016/j.bbamcr.2012.02.012
  13. Grayson, J.M., Laniewski, N.G., Lanier, J.G., and Ahmed, R. (2003). Mitochondrial potential and reactive oxygen intermediates in antigen-specific CD8+ T cells during viral infection. J. Immunol. 170, 4745-4751. https://doi.org/10.4049/jimmunol.170.9.4745
  14. Hildeman, D.A., Mitchell, T., Teague, T.K., Henson, P., Day, B.J., Kappler, J., and Marrack, P.C. (1999). Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735-744. https://doi.org/10.1016/S1074-7613(00)80072-2
  15. Hildeman, D.A., Zhu, Y., Mitchell, T.C., Bouillet, P., Strasser, A., Kappler, J., and Marrack, P. (2002). Activated T cell death in vivo mediated by proapoptotic Bcl-2 family member Bim. Immunity 16, 759-767. https://doi.org/10.1016/S1074-7613(02)00322-9
  16. Hildeman, D.A., Mitchell, T., Aronow, B., Wojciechowski, S., Kappler, J., and Marrack, P. (2003a). Control of Bcl-2 expression by reactive oxygen species. Proc. Natl. Acad. Sci. USA 100, 15035-15040. https://doi.org/10.1073/pnas.1936213100
  17. Hildeman, D.A., Mitchell, T., Kappler, J., and Marrack, P. (2003b). T cell apoptosis and reactive oxygen species. J. Clin. Invest. 111, 575-581. https://doi.org/10.1172/JCI200318007
  18. Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S., Ilkayeva, O.R., et al. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125. https://doi.org/10.1038/nature08778
  19. Hogan, P.G., Hogan, P.G., Chen, L., and Chen, L. (2003). Transcriptional regulation by calcium, calcineurin. NFAT. Genes Dev. 17, 2205-2232. https://doi.org/10.1101/gad.1102703
  20. Hoyos, B., Ballard, D.W., Bohnlein, E., Siekevitz, M., and Greene, W.C. (1989). Kappa B-specific DNA binding proteins: role in the regulation of human interleukin-2 gene expression. Science 244, 457-460. https://doi.org/10.1126/science.2497518
  21. Jambrina, E., Alonso, R., Alcalde, M., Rodríguez, M. del C., Serrano, A., Martinez-A., C., Garcia-Sancho, J., and Izquierdo, M. (2003). Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death. J. Biol. Chem. 278, 14134-14145. https://doi.org/10.1074/jbc.M211388200
  22. Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamideinduced mitophagy: Event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314. https://doi.org/10.1074/jbc.M112.363747
  23. Kaminski, M., Kiessling, M., Süss, D., Krammer, P.H., and Gülow, K. (2007). Novel role for mitochondria: protein kinase Cthetadependent oxidative signaling organelles in activation-induced T-cell death. Mol. Cell. Biol. 27, 3625-3639. https://doi.org/10.1128/MCB.02295-06
  24. Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438. https://doi.org/10.1111/j.1474-9726.2009.00487.x
  25. Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). Nicotinamide extends replicative lifespan of human cells. Aging Cell 5, 423-436. https://doi.org/10.1111/j.1474-9726.2006.00234.x
  26. Klionsky, D.J., Elazar, Z., Seglen, P.O., and Rubinsztein, D.C. (2008). Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4, 849-850. https://doi.org/10.4161/auto.6845
  27. Kovacs, J.R., Li, C., Yang, Q., Li, G., Garcia, I.G., Ju, S., Roodman, D.G., Windle, J.J., Zhang, X., and Lu, B. (2012). Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ. 19, 144-152. https://doi.org/10.1038/cdd.2011.78
  28. Kwak, J.Y., Ham, H.J., Kim, C.M., and Hwang, E.S. (2015). Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 38, 229-235 https://doi.org/10.14348/molcells.2015.2253
  29. Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379. https://doi.org/10.1073/pnas.0712145105
  30. Liu, G., Foster, J., Manlapaz Ramos, P., and Olivera, B.M. (1982). Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium. J. Bacteriol. 152, 1111-1116.
  31. Lyons, A.B., and Parish, C.R. (1994). Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131-137. https://doi.org/10.1016/0022-1759(94)90236-4
  32. Ma, Y., Nie, H., Chen, H., Li, J., Hong, Y., Wang, B., Wang, C., Zhang, J., Cao, W., Zhang, M., et al. (2015). $NAD^+$/NADH metabolism and $NAD^+$-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications. Curr. Med. Chem. 22, 1239-1247. https://doi.org/10.2174/0929867322666150209154420
  33. Maiese, K., Chong, Z.Z., Hou, J., and Shang, C. (2009). The vitamin nicotinamide: Translating nutrition into clinical care. Molecules 14, 3446-3485. https://doi.org/10.3390/molecules14093446
  34. Marte, B.M., and Downward, J. (1997). PKB/Akt: Connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22, 355-358. https://doi.org/10.1016/S0968-0004(97)01097-9
  35. Meuer, S.C., Hussey, R.E., Cantrell, D.A., Hodgdon, J.C., Schlossman, S.F., Smith, K.A., and Reinherz, E.L. (1984). Triggering of the T3-Ti antigen-receptor complex results in clonal T-cell proliferation through an interleukin 2-dependent autocrine pathway. Proc. Natl. Acad. Sci. USA 81, 1509-1513. https://doi.org/10.1073/pnas.81.5.1509
  36. Qiu, X., Brown, K., Hirschey, M.D., Verdin, E., and Chen, D. (2010). Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 12, 662-667. https://doi.org/10.1016/j.cmet.2010.11.015
  37. Russell, J.H. (1995). Activation-induced death of mature T cells in the regulation of immune responses. Curr. Opin. Immunol. 7, 382-388. https://doi.org/10.1016/0952-7915(95)80114-6
  38. Shore, D. (2000). The Sir2 protein family: A novel deacetylase for gene silencing and more. Proc. Natl. Acad. Sci. USA 97, 14030-14032. https://doi.org/10.1073/pnas.011506198
  39. Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M., and Prolla, T.A. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under Caloric Restriction. Cell 143, 802-812. https://doi.org/10.1016/j.cell.2010.10.002
  40. Stranges, P.B., Watson, J., Cooper, C.J., Choisy-Rossi, C.M., Stonebraker, A.C., Beighton, R.A., Hartig, H., Sundberg, J.P., Servick, S., Kaufmann, G., et al. (2007). Elimination of antigenpresenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629-641. https://doi.org/10.1016/j.immuni.2007.03.016

Cited by

  1. Effects of energy supply and nicotinic acid supplementation on phagocytosis and ROS production of blood immune cells of periparturient primi- and pluriparous dairy cows 2017, https://doi.org/10.1016/j.rvsc.2017.09.012
  2. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells vol.74, pp.18, 2017, https://doi.org/10.1007/s00018-017-2527-8
  3. Hyperbaric oxygen inhibits production of CD3+ T cells in the thymus and facilitates malignant glioma cell growth vol.46, pp.7, 2018, https://doi.org/10.1177/0300060518767796
  4. Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy vol.40, pp.7, 2017, https://doi.org/10.14348/molcells.2017.0081
  5. The Role of Nicotinamide in Cancer Chemoprevention and Therapy vol.10, pp.3, 2015, https://doi.org/10.3390/biom10030477
  6. Nicotinamide Supplementation during the In Vitro Maturation of Oocytes Improves the Developmental Competence of Preimplantation Embryos: Potential Link to SIRT1/AKT Signaling vol.9, pp.6, 2015, https://doi.org/10.3390/cells9061550
  7. Nicotinamide combined with gemcitabine is an immunomodulatory therapy that restrains pancreatic cancer in mice vol.8, pp.2, 2015, https://doi.org/10.1136/jitc-2020-001250
  8. Nicotinamide‐induced mouse embryo developmental defect rescued by resveratrol and I‐CBP112 vol.87, pp.9, 2015, https://doi.org/10.1002/mrd.23405
  9. Effect of nicotinamide supplementation in in vitro fertilization medium on bovine embryo development vol.87, pp.10, 2020, https://doi.org/10.1002/mrd.23417
  10. B Vitamins and Their Role in Immune Regulation and Cancer vol.12, pp.11, 2020, https://doi.org/10.3390/nu12113380
  11. Transcriptome analysis reveals a molecular understanding of nicotinamide and butyrate sodium on meat quality of broilers under high stocking density vol.21, pp.1, 2020, https://doi.org/10.1186/s12864-020-06827-0
  12. NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity vol.22, pp.2, 2021, https://doi.org/10.1038/s41590-020-00829-6
  13. Possible mechanisms of cancer prevention by nicotinamide vol.178, pp.10, 2015, https://doi.org/10.1111/bph.15096
  14. Small-Molecule Inhibitors of Reactive Oxygen Species Production vol.64, pp.9, 2021, https://doi.org/10.1021/acs.jmedchem.0c01914
  15. Ex vivo expansion of hematopoietic stem cells: Finally transitioning from the lab to the clinic vol.50, pp.None, 2015, https://doi.org/10.1016/j.blre.2021.100853
  16. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy vol.9, pp.12, 2015, https://doi.org/10.3390/vaccines9121392