References
- Ahn, B.-H., Kim, H.-S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.-X., and Finkel, T. (2008). A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 105, 14447-14452. https://doi.org/10.1073/pnas.0803790105
- Beiqing, L., Chen, M., and Whisler, R.L. (1996). Sublethal levels of oxidative stress stimulate transcriptional activation of c-jun and suppress IL-2 promoter activation in Jurkat T cells. J. Immunol. 157, 160-169.
- Bell, B.D., Leverrier, S., Weist, B.M., Newton, R.H., Arechiga, A.F., Luhrs, K.A., Morrissette, N.S., and Walsh, C.M. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc. Natl. Acad. Sci. USA 105, 16677-16682. https://doi.org/10.1073/pnas.0808597105
- Bjorkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603-614. https://doi.org/10.1083/jcb.200507002
- Brennan, P., Babbage, J.W., Burgering, B.M.T., Groner, B., Reif, K., and Cantrell, D.A. (1997). Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7, 679-689. https://doi.org/10.1016/S1074-7613(00)80388-X
- Brenner, D., Krammer, P.H., and Arnold, R. (2008). Concepts of activated T cell death. Crit. Rev. Oncol. Hematol. 66, 52-64. https://doi.org/10.1016/j.critrevonc.2008.01.002
- Chong, Z.-Z., Lin, S.-H., Li, F., and Maiese, K. (2005). The sirtuin inhibitor nicotinamide enhances neuronal cell survival during acute anoxic injury through AKT, BAD, PARP, and mitochondrial associated "anti-apoptotic" pathways. Curr. Neurovasc. Res. 2, 271-285. https://doi.org/10.2174/156720205774322584
- Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233-249. https://doi.org/10.1042/bj3410233
- D'Souza, A.D., Parikh, N., Kaech, S.M., and Shadel, G.S. (2007). Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion 7, 374-385. https://doi.org/10.1016/j.mito.2007.08.001
- Effros, R.B., Dagarag, M., Spaulding, C., and Man, J. (2005). The role of CD8 T-cell replicative senescence in human aging. Immunol. Rev. 205, 147-157. https://doi.org/10.1111/j.0105-2896.2005.00259.x
- Giannakou, M.E., and Partridge, L. (2004). The interaction between FOXO and SIRT1: Tipping the balance towards survival. Trends Cell Biol. 14, 408-412. https://doi.org/10.1016/j.tcb.2004.07.006
- Gomes, L.C., and Scorrano, L. (2013). Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta. 1833, 205-212. https://doi.org/10.1016/j.bbamcr.2012.02.012
- Grayson, J.M., Laniewski, N.G., Lanier, J.G., and Ahmed, R. (2003). Mitochondrial potential and reactive oxygen intermediates in antigen-specific CD8+ T cells during viral infection. J. Immunol. 170, 4745-4751. https://doi.org/10.4049/jimmunol.170.9.4745
- Hildeman, D.A., Mitchell, T., Teague, T.K., Henson, P., Day, B.J., Kappler, J., and Marrack, P.C. (1999). Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735-744. https://doi.org/10.1016/S1074-7613(00)80072-2
- Hildeman, D.A., Zhu, Y., Mitchell, T.C., Bouillet, P., Strasser, A., Kappler, J., and Marrack, P. (2002). Activated T cell death in vivo mediated by proapoptotic Bcl-2 family member Bim. Immunity 16, 759-767. https://doi.org/10.1016/S1074-7613(02)00322-9
- Hildeman, D.A., Mitchell, T., Aronow, B., Wojciechowski, S., Kappler, J., and Marrack, P. (2003a). Control of Bcl-2 expression by reactive oxygen species. Proc. Natl. Acad. Sci. USA 100, 15035-15040. https://doi.org/10.1073/pnas.1936213100
- Hildeman, D.A., Mitchell, T., Kappler, J., and Marrack, P. (2003b). T cell apoptosis and reactive oxygen species. J. Clin. Invest. 111, 575-581. https://doi.org/10.1172/JCI200318007
- Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S., Ilkayeva, O.R., et al. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125. https://doi.org/10.1038/nature08778
- Hogan, P.G., Hogan, P.G., Chen, L., and Chen, L. (2003). Transcriptional regulation by calcium, calcineurin. NFAT. Genes Dev. 17, 2205-2232. https://doi.org/10.1101/gad.1102703
- Hoyos, B., Ballard, D.W., Bohnlein, E., Siekevitz, M., and Greene, W.C. (1989). Kappa B-specific DNA binding proteins: role in the regulation of human interleukin-2 gene expression. Science 244, 457-460. https://doi.org/10.1126/science.2497518
- Jambrina, E., Alonso, R., Alcalde, M., Rodríguez, M. del C., Serrano, A., Martinez-A., C., Garcia-Sancho, J., and Izquierdo, M. (2003). Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death. J. Biol. Chem. 278, 14134-14145. https://doi.org/10.1074/jbc.M211388200
- Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamideinduced mitophagy: Event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314. https://doi.org/10.1074/jbc.M112.363747
- Kaminski, M., Kiessling, M., Süss, D., Krammer, P.H., and Gülow, K. (2007). Novel role for mitochondria: protein kinase Cthetadependent oxidative signaling organelles in activation-induced T-cell death. Mol. Cell. Biol. 27, 3625-3639. https://doi.org/10.1128/MCB.02295-06
- Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438. https://doi.org/10.1111/j.1474-9726.2009.00487.x
- Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). Nicotinamide extends replicative lifespan of human cells. Aging Cell 5, 423-436. https://doi.org/10.1111/j.1474-9726.2006.00234.x
- Klionsky, D.J., Elazar, Z., Seglen, P.O., and Rubinsztein, D.C. (2008). Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4, 849-850. https://doi.org/10.4161/auto.6845
- Kovacs, J.R., Li, C., Yang, Q., Li, G., Garcia, I.G., Ju, S., Roodman, D.G., Windle, J.J., Zhang, X., and Lu, B. (2012). Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ. 19, 144-152. https://doi.org/10.1038/cdd.2011.78
- Kwak, J.Y., Ham, H.J., Kim, C.M., and Hwang, E.S. (2015). Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 38, 229-235 https://doi.org/10.14348/molcells.2015.2253
- Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379. https://doi.org/10.1073/pnas.0712145105
- Liu, G., Foster, J., Manlapaz Ramos, P., and Olivera, B.M. (1982). Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium. J. Bacteriol. 152, 1111-1116.
- Lyons, A.B., and Parish, C.R. (1994). Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131-137. https://doi.org/10.1016/0022-1759(94)90236-4
-
Ma, Y., Nie, H., Chen, H., Li, J., Hong, Y., Wang, B., Wang, C., Zhang, J., Cao, W., Zhang, M., et al. (2015).
$NAD^+$ /NADH metabolism and$NAD^+$ -dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications. Curr. Med. Chem. 22, 1239-1247. https://doi.org/10.2174/0929867322666150209154420 - Maiese, K., Chong, Z.Z., Hou, J., and Shang, C. (2009). The vitamin nicotinamide: Translating nutrition into clinical care. Molecules 14, 3446-3485. https://doi.org/10.3390/molecules14093446
- Marte, B.M., and Downward, J. (1997). PKB/Akt: Connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22, 355-358. https://doi.org/10.1016/S0968-0004(97)01097-9
- Meuer, S.C., Hussey, R.E., Cantrell, D.A., Hodgdon, J.C., Schlossman, S.F., Smith, K.A., and Reinherz, E.L. (1984). Triggering of the T3-Ti antigen-receptor complex results in clonal T-cell proliferation through an interleukin 2-dependent autocrine pathway. Proc. Natl. Acad. Sci. USA 81, 1509-1513. https://doi.org/10.1073/pnas.81.5.1509
- Qiu, X., Brown, K., Hirschey, M.D., Verdin, E., and Chen, D. (2010). Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 12, 662-667. https://doi.org/10.1016/j.cmet.2010.11.015
- Russell, J.H. (1995). Activation-induced death of mature T cells in the regulation of immune responses. Curr. Opin. Immunol. 7, 382-388. https://doi.org/10.1016/0952-7915(95)80114-6
- Shore, D. (2000). The Sir2 protein family: A novel deacetylase for gene silencing and more. Proc. Natl. Acad. Sci. USA 97, 14030-14032. https://doi.org/10.1073/pnas.011506198
- Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M., and Prolla, T.A. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under Caloric Restriction. Cell 143, 802-812. https://doi.org/10.1016/j.cell.2010.10.002
- Stranges, P.B., Watson, J., Cooper, C.J., Choisy-Rossi, C.M., Stonebraker, A.C., Beighton, R.A., Hartig, H., Sundberg, J.P., Servick, S., Kaufmann, G., et al. (2007). Elimination of antigenpresenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629-641. https://doi.org/10.1016/j.immuni.2007.03.016
Cited by
- Effects of energy supply and nicotinic acid supplementation on phagocytosis and ROS production of blood immune cells of periparturient primi- and pluriparous dairy cows 2017, https://doi.org/10.1016/j.rvsc.2017.09.012
- Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells vol.74, pp.18, 2017, https://doi.org/10.1007/s00018-017-2527-8
- Hyperbaric oxygen inhibits production of CD3+ T cells in the thymus and facilitates malignant glioma cell growth vol.46, pp.7, 2018, https://doi.org/10.1177/0300060518767796
- Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy vol.40, pp.7, 2017, https://doi.org/10.14348/molcells.2017.0081
- The Role of Nicotinamide in Cancer Chemoprevention and Therapy vol.10, pp.3, 2015, https://doi.org/10.3390/biom10030477
- Nicotinamide Supplementation during the In Vitro Maturation of Oocytes Improves the Developmental Competence of Preimplantation Embryos: Potential Link to SIRT1/AKT Signaling vol.9, pp.6, 2015, https://doi.org/10.3390/cells9061550
- Nicotinamide combined with gemcitabine is an immunomodulatory therapy that restrains pancreatic cancer in mice vol.8, pp.2, 2015, https://doi.org/10.1136/jitc-2020-001250
- Nicotinamide‐induced mouse embryo developmental defect rescued by resveratrol and I‐CBP112 vol.87, pp.9, 2015, https://doi.org/10.1002/mrd.23405
- Effect of nicotinamide supplementation in in vitro fertilization medium on bovine embryo development vol.87, pp.10, 2020, https://doi.org/10.1002/mrd.23417
- B Vitamins and Their Role in Immune Regulation and Cancer vol.12, pp.11, 2020, https://doi.org/10.3390/nu12113380
- Transcriptome analysis reveals a molecular understanding of nicotinamide and butyrate sodium on meat quality of broilers under high stocking density vol.21, pp.1, 2020, https://doi.org/10.1186/s12864-020-06827-0
- NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity vol.22, pp.2, 2021, https://doi.org/10.1038/s41590-020-00829-6
- Possible mechanisms of cancer prevention by nicotinamide vol.178, pp.10, 2015, https://doi.org/10.1111/bph.15096
- Small-Molecule Inhibitors of Reactive Oxygen Species Production vol.64, pp.9, 2021, https://doi.org/10.1021/acs.jmedchem.0c01914
- Ex vivo expansion of hematopoietic stem cells: Finally transitioning from the lab to the clinic vol.50, pp.None, 2015, https://doi.org/10.1016/j.blre.2021.100853
- Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy vol.9, pp.12, 2015, https://doi.org/10.3390/vaccines9121392