References
- Cohen, S.D., and Khairallah, E.A. (1997). Selective protein arylation and acetaminophen-induced hepatotoxicity. Drug Metab. Rev. 29, 59-77. https://doi.org/10.3109/03602539709037573
- Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., et al. (2006). Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403-416. https://doi.org/10.1016/j.cmet.2006.05.005
- Dahlin, D.C., Miwa, G.T., Lu, A.Y., and Nelson, S.D. (1984). Nacetyl- p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. USA 81, 1327-1331. https://doi.org/10.1073/pnas.81.5.1327
- Dong, G.Z., Lee, J.H., Ki, S.H., Yang, J.H., Cho, I.J., Kang, S.H., Zhao, R.J., Kim, S.C., and Kim, Y.W., (2014). AMPK activation by isorhamnetin protects hepatocytes against oxidative stress and mitochondrial dysfunction. Eur. J. Pharmacol. 740, 634-640. https://doi.org/10.1016/j.ejphar.2014.06.017
- Fogarty, S., and Hardie, D.G. (2010). Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804, 581-591. https://doi.org/10.1016/j.bbapap.2009.09.012
- Goransson, O., McBride, A., Hawley, S.A., Ross, F.A., Shpiro, N., Foretz, M., Viollet, B., Hardie, D.G., and Sakamoto, K. (2007). Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J. Biol. Chem. 282, 32549-32560. https://doi.org/10.1074/jbc.M706536200
- Hardie, D.G., and Sakamoto, K. (2006). AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21, 48-60. https://doi.org/10.1152/physiol.00044.2005
- Hinson, J.A., Roberts, D.W., and James, L.P. (2010). Mechanisms of acetaminophen-induced liver necrosis. Handb. Exp. Pharmacol. 2010, 369-405.
- Hwang, J.H., Kim, Y.H., Noh, J.R., Gang, G.T., Kim, K.S., Chung, H.K., Tadi, S., Yim, Y.H., Shong, M., and Lee, C.H. (2014). The protective role of NAD(P)H:quinone oxidoreductase 1 on acetaminophen-induced liver injury is associated with prevention of adenosine triphosphate depletion and improvement of mitochondrial dysfunction. Arch. Toxicol. [Epub ahead of print].
- Ido, Y., Carling, D., and Ruderman, N. (2002). Hyperglycemiainduced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 51, 159-167. https://doi.org/10.2337/diabetes.51.1.159
- Jaeschke, H., and Bajt, M.L. (2006). Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol. Sci. 89, 31-41. https://doi.org/10.1093/toxsci/kfi336
- Jia, F., Wu, C., Chen, Z., Lu, G. (2011). AMP-activated protein kinase inhibits homocysteine-induced dysfunction and apoptosis in endothelial progenitor cells. Cardiovasc. Drugs Ther. 25, 21-25. https://doi.org/10.1007/s10557-010-6277-1
- Jia, F., Wu, C., Chen, Z., Lu, G. (2012). Atorvastatin inhibits homocysteine-induced endoplasmic reticulum stress through activation of AMP-activated protein kinase. Cardiovasc. Ther. 30, 317-325. https://doi.org/10.1111/j.1755-5922.2011.00287.x
- Jung, Y., Jang, Y.J., Kang, M.H., Park, Y.S., Oh, S.J., Lee, D.C., Xie, Z., Yoo, H.S., Park, K. C., Yeom, Y.I., (2013). Metabolic signature genes associated with susceptibility to pyruvate kinase, muscle type 2 gene ablation in cancer cells. Mol. Cells 35, 335-341. https://doi.org/10.1007/s10059-013-2319-4
- Larson, A.M., Polson, J., Fontana, R.J., Davern, T.J., Lalani, E., Hynan, L.S., Reisch, J.S., Schiodt, F.V., Ostapowicz, G., Shakil, A.O., et al. (2005). Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42, 1364-1372. https://doi.org/10.1002/hep.20948
- McGill, M.R., Williams, C.D., Xie, Y., Ramachandran, A., and Jaeschke, H. (2012). Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol. 264, 387-394. https://doi.org/10.1016/j.taap.2012.08.015
- Mihaylova, M.M., and Shaw, R.J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023. https://doi.org/10.1038/ncb2329
- Nelson, S.D. (1990). Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin. Liver Dis. 10, 267-278. https://doi.org/10.1055/s-2008-1040482
- Nieminen, A.L., Saylor, A.K., Herman, B., and Lemasters, J.J. (1994). ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Am. J. Physiol. 267, C67-74. https://doi.org/10.1152/ajpcell.1994.267.1.C67
- Packer, M.A., Scarlett, J.L., Martin, S.W., and Murphy, M.P. (1997). Induction of the mitochondrial permeability transition by peroxynitrite. Biochem. Soc. Trans. 25, 909-914. https://doi.org/10.1042/bst0250909
- Peralta, C., Bartrons, R., Serafin, A., Blazquez, C., Guzman, M., Prats, N., Xaus, C., Cutillas, B., Gelpi, E., and Rosello-Catafau, J. (2001). Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology 34, 1164-1173. https://doi.org/10.1053/jhep.2001.29197
- Polson, J., and Lee, W.M. (2005). AASLD position paper: the management of acute liver failure. Hepatology 41, 1179-1197. https://doi.org/10.1002/hep.20703
- Qian, T., Herman, B., and Lemasters, J.J. (1999). The mitochondrial permeability transition mediates both necrotic and apoptotic death of hepatocytes exposed to Br-A23187. Toxicol. Appl. Pharmacol. 154, 117-125. https://doi.org/10.1006/taap.1998.8580
- Qiu, G., Wan, R., Hu, J., Mattson, M.P., Spangler, E., Liu, S., Liu, S., Yau, S.-Y., Lee, T.M.C., Gleichmann, M., et al. (2011). Adiponectin protects rat hippocampal neurons against excitotoxicity. Age 33, 155-165. https://doi.org/10.1007/s11357-010-9173-5
- Rossi, A., and Lord, J.M. (2013). Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase. Apoptosis 18, 1469-1480. https://doi.org/10.1007/s10495-013-0893-8
- Saberi, B., Ybanez, M.D., Johnson, H.S., Gaarde, W.A., Han, D., and Kaplowitz, N. (2014). Protein kinase C (PKC) participates in acetaminophen hepatotoxicity through c-jun-N-terminal kinase (JNK)-dependent and -independent signaling pathways. Hepatology 59, 1543-1554. https://doi.org/10.1002/hep.26625
- Saito, C., Lemasters, J.J., and Jaeschke, H. (2010). c-Jun Nterminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol. Appl. Pharmacol. 246, 8-17. https://doi.org/10.1016/j.taap.2010.04.015
- Sanders, M.J., Ali, Z.S., Hegarty, B.D., Heath, R., Snowden, M.A., and Carling, D. (2007). Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J. Biol. Chem. 282, 32539-32548. https://doi.org/10.1074/jbc.M706543200
- Shin, S.M., Cho, I.J., and Kim, S.G. (2009). Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol. Pharmacol. 76, 884-895. https://doi.org/10.1124/mol.109.058479
- Stefanelli, C., Stanic, I., Bonavita, F., Flamigni, F., Pignatti, C., Guarnieri, C., and Caldarera, C.M. (1998). Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMPactivated protein kinase. Biochem. Biophys. Res. Commun. 243, 821-826. https://doi.org/10.1006/bbrc.1998.8154
- Steinberg, G.R., and Kemp, B.E. (2009). AMPK in health and disease. Physiol. Rev. 89, 1025-1078. https://doi.org/10.1152/physrev.00011.2008
- Towler, M.C., and Hardie, D.G. (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328-341. https://doi.org/10.1161/01.RES.0000256090.42690.05
- Viollet, B., Athea, Y., Mounier, R., Guigas, B., Zarrinpashneh, E., Horman, S., Lantier, L., Hebrard, S., Devin-Leclerc, J., Beauloye, C., et al. (2009). AMPK: Lessons from transgenic and knockout animals. Front Biosci. 14, 19-44.
- Yang, Y.M., Han, C.Y., Kim, Y.J., and Kim, S.G. (2010). AMPKassociated signaling to bridge the gap between fuel metabolism and hepatocyte viability. World J. Gastroenterol. 16, 3731-3742. https://doi.org/10.3748/wjg.v16.i30.3731
Cited by
- Crosstalk of 5′-Monophosphate-Activated Protein Kinase (AMPK) with Extracellular and Intracellular Signaling Pathways in the Regulation of Nutrient Metabolism and Cell Survival in the Liver vol.3, pp.4, 2017, https://doi.org/10.1007/s40495-017-0091-4
- ameliorates acute liver injury by inhibiting oxidative stress via upregulation of anti-oxidant enzymes vol.23, pp.1, 2018, https://doi.org/10.1080/13510002.2018.1546986
- Integrative proteomics and immunochemistry analysis of the factors in the necrosis and repair in acetaminophen-induced acute liver injury in mice pp.00219541, 2019, https://doi.org/10.1002/jcp.27397
- GADD45α alleviates acetaminophen-induced hepatotoxicity by promoting AMPK activation pp.1420-9071, 2018, https://doi.org/10.1007/s00018-018-2912-y
- Autoantibody against β1-adrenoceptor promotes the differentiation of natural regulatory T cells from activated CD4+ T cells by up-regulating AMPK-mediated fatty acid oxidation vol.10, pp.3, 2019, https://doi.org/10.1038/s41419-018-1209-2
- Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions vol.17, pp.None, 2015, https://doi.org/10.1016/j.redox.2018.04.019
- The potential roles of NAD(P)H:quinone oxidoreductase 1 in the development of diabetic nephropathy and actin polymerization vol.10, pp.1, 2015, https://doi.org/10.1038/s41598-020-74493-z
- Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice vol.10, pp.3, 2021, https://doi.org/10.3390/antiox10030390