참고문헌
- Ballesteros, J., and Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. . Methods Neurosci. 25, 366-428. https://doi.org/10.1016/S1043-9471(05)80049-7
- Caffrey, M. (2011). Crystallizing membrane proteins for structurefunction studies using lipidic mesophases. Biochem. Soc. Trans. 39, 725-732. https://doi.org/10.1042/BST0390725
- Chae, P.S., Rasmussen, S.G., Rana, R.R., Gotfryd, K., Chandra, R., Goren, M.A., Kruse, A.C., Nurva, S., Loland, C.J., Pierre, Y., et al. (2010). Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 7, 1003-1008. https://doi.org/10.1038/nmeth.1526
- Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., et al. (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258-1265. https://doi.org/10.1126/science.1150577
- Chien, E.Y., Liu, W., Zhao, Q., Katritch, V., Han, G.W., Hanson, M.A., Shi, L., Newman, A.H., Javitch, J.A., Cherezov, V., et al. (2010). Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091-1095. https://doi.org/10.1126/science.1197410
- Chini, B., and Parenti, M. (2009). G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats. J. Mol. Endocrinol. 42, 371-379. https://doi.org/10.1677/JME-08-0114
- Chrencik, J.E., Roth, C.B., Terakado, M., Kurata, H., Omi, R., Kihara, Y., Warshaviak, D., Nakade, S., Asmar-Rovira, G., Mileni, M., et al. (2015). Crystal structure of antagonist bound human lysophosphatidic Acid Receptor 1. Cell 161, 1633-1643. https://doi.org/10.1016/j.cell.2015.06.002
- Dore, A.S., Okrasa, K., Patel, J.C., Serrano-Vega, M., Bennett, K., Cooke, R.M., Errey, J.C., Jazayeri, A., Khan, S., Tehan, B., et al. (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511, 557-562. https://doi.org/10.1038/nature13396
- Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., and Schioth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272. https://doi.org/10.1124/mol.63.6.1256
- Gether, U. (2000). Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90-113. https://doi.org/10.1210/edrv.21.1.0390
- Granier, S., Manglik, A., Kruse, A.C., Kobilka, T.S., Thian, F.S., Weis, W.I., and Kobilka, B.K. (2012). Structure of the delta-opioid receptor bound to naltrindole. Nature 485, 400-404. https://doi.org/10.1038/nature11111
- Gutierrez-de-Teran, H., Massink, A., Rodriguez, D., Liu, W., Han, G.W., Joseph, J.S., Katritch, I., Heitman, L.H., Xia, L., Ijzerman, A.P., et al. (2013). The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. Structure 21, 2175-2185. https://doi.org/10.1016/j.str.2013.09.020
- Haga, K., Kruse, A.C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., Weis, W.I., Okada, T., Kobilka, B.K., Haga, T., et al. (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547-551. https://doi.org/10.1038/nature10753
- Hanson, M.A., Roth, C.B., Jo, E., Griffith, M.T., Scott, F.L., Reinhart, G., Desale, H., Clemons, B., Cahalan, S.M., Schuerer, S.C., et al. (2012). Crystal structure of a lipid G protein-coupled receptor. Science 335, 851-855. https://doi.org/10.1126/science.1215904
- Hollenstein, K., Kean, J., Bortolato, A., Cheng, R.K., Dore, A.S., Jazayeri, A., Cooke, R.M., Weir, M., and Marshall, F.H. (2013). Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438-443. https://doi.org/10.1038/nature12357
- Huang, J., Chen, S., Zhang, J.J., and Huang, X.Y. (2013). Crystal structure of oligomeric beta1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat. Struct. Mol. Biol. 20, 419-425. https://doi.org/10.1038/nsmb.2504
- Huang, W.J., Manglik, A., Venkatakrishnan, A.J., Laeremans, T., Feinberg, E.N., Sanborn, A.L., Kato, H.E., Livingston, K.E., Thorsen, T.S., Kling, R.C., et al. (2015). Structural insights into mu-opioid receptor activation. Nature 524, 315-321. https://doi.org/10.1038/nature14886
- Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P., and Stevens, R.C. (2008). The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211-1217. https://doi.org/10.1126/science.1164772
- Kang, Y., Zhou, X.E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T.A., Yefanov, O., Han, G.W., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561-567. https://doi.org/10.1038/nature14656
- Kobilka, B.K. (2007). G protein coupled receptor structure and activation. Biochim. Biophys. Acta 1768, 794-807. https://doi.org/10.1016/j.bbamem.2006.10.021
- Kobilka, B.K., and Deupi, X. (2007). Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397-406. https://doi.org/10.1016/j.tips.2007.06.003
- Kruse, A.C., Hu, J., Pan, A.C., Arlow, D.H., Rosenbaum, D.M., Rosemond, E., Green, H.F., Liu, T., Chae, P.S., Dror, R.O., et al. (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552-556. https://doi.org/10.1038/nature10867
- Lebon, G., Warne, T., Edwards, P.C., Bennett, K., Langmead, C.J., Leslie, A.G., and Tate, C.G. (2011). Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521-525. https://doi.org/10.1038/nature10136
- Lebon, G., Warne, T., and Tate, C.G. (2012). Agonist-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 22, 482-490. https://doi.org/10.1016/j.sbi.2012.03.007
- Lee, S.P., O'Dowd, B.F., and George, S.R. (2003). Homo- and hetero-oligomerization of G protein-coupled receptors. Life Sci. 74, 173-180. https://doi.org/10.1016/j.lfs.2003.09.028
- Lohse, M.J. (2010). Dimerization in GPCR mobility and signaling. Curr. Opin. Pharmacol. 10, 53-58. https://doi.org/10.1016/j.coph.2009.10.007
- Manglik, A., Kruse, A.C., Kobilka, T.S., Thian, F.S., Mathiesen, J.M., Sunahara, R.K., Pardo, L., Weis, W.I., Kobilka, B.K., and Granier, S. (2012). Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature 485, 321-326. https://doi.org/10.1038/nature10954
- Milligan, G. (2009). G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J. Pharmacol. 158, 5-14. https://doi.org/10.1111/j.1476-5381.2009.00169.x
- Nygaard, R., Frimurer, T.M., Holst, B., Rosenkilde, M.M., and Schwartz, T.W. (2009). Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci. 30, 249-259. https://doi.org/10.1016/j.tips.2009.02.006
- Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., et al. (2000). Crystal structure of rhodopsin: A G proteincoupled receptor. Science 289, 739-745. https://doi.org/10.1126/science.289.5480.739
- Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.-W., and Ernst, O.P. (2008). Crystal structure of the ligand-free G-proteincoupled receptor opsin. Nature 454, 183-187. https://doi.org/10.1038/nature07063
- Pin, J.P., Kniazeff, J., Binet, V., Liu, J., Maurel, D., Galvez, T., Duthey, B., Havlickova, M., Blahos, J., Prezeau, L., et al. (2004). Activation mechanism of the heterodimeric GABA(B) receptor. Biochem. Pharmacol. 68, 1565-1572. https://doi.org/10.1016/j.bcp.2004.06.035
- Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti, R.F., et al. (2007). Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383-387. https://doi.org/10.1038/nature06325
- Rasmussen, S.G., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al. (2011). Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549-555. https://doi.org/10.1038/nature10361
- Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Yao, X.J., Weis, W.I., Stevens, R.C., et al. (2007). GPCR engineering yields highresolution structural insights into beta2-adrenergic receptor function. Science 318, 1266-1273. https://doi.org/10.1126/science.1150609
-
Rosenbaum, D.M., Zhang, C., Lyons, J.A., Holl, R., Aragao, D., Arlow, D.H., Rasmussen, S.G.F., Choi, H.-J., DeVree, B.T., Sunahara, R.K., et al. (2011). Structure and function of an irreversible agonist-
${\beta}2$ adrenoceptor complex. Nature 469, 236-240. https://doi.org/10.1038/nature09665 - Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krauss, N., Choe, H.W., Hofmann, K.P., and Ernst, O.P. (2008). Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497-502. https://doi.org/10.1038/nature07330
- Schlyer, S., and Horuk, R. (2006). I want a new drug: G-proteincoupled receptors in drug development. Drug Discov. Today 11, 481-493. https://doi.org/10.1016/j.drudis.2006.04.008
- Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Cherezov, V., Liu, W., Han, G.W., et al. (2011). Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65-70. https://doi.org/10.1038/nature10236
- Siu, F.Y., He, M., de Graaf, C., Han, G.W., Yang, D., Zhang, Z., Zhou, C., Xu, Q., Wacker, D., Joseph, J.S., et al. (2013). Structure of the human glucagon class B G-protein-coupled receptor. Nature 499, 444-449. https://doi.org/10.1038/nature12393
- Srivastava, A., Yano, J., Hirozane, Y., Kefala, G., Gruswitz, F., Snell, G., Lane, W., Ivetac, A., Aertgeerts, K., Nguyen, J., et al. (2014). High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513, 124-127. https://doi.org/10.1038/nature13494
- Szczepek, M., Beyriere, F., Hofmann, K.P., Elgeti, M., Kazmin, R., Rose, A., Bartl, F.J., von Stetten, D., Heck, M., Sommer, M.E., et al. (2014). Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun. 5, 4801. https://doi.org/10.1038/ncomms5801
- Tan, Q., Zhu, Y., Li, J., Chen, Z., Han, G.W., Kufareva, I., Li, T., Ma, L., Fenalti, G., Li, J., et al. (2013). Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341, 1387-1390. https://doi.org/10.1126/science.1241475
- Thompson, A.A., Liu, W., Chun, E., Katritch, V., Wu, H., Vardy, E., Huang, X.P., Trapella, C., Guerrini, R., Calo, G., et al. (2012). Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485, 395-399. https://doi.org/10.1038/nature11085
- Thomsen, W., Frazer, J., and Unett, D. (2005). Functional assays for screening GPCR targets. Curr. Opin. Biotechnol. 16, 655-665.
- Wacker, D., Wang, C., Katritch, V., Han, G.W., Huang, X.P., Vardy, E., McCorvy, J.D., Jiang, Y., Chu, M.H., Siu, F.Y., et al. (2013). Structural features for functional selectivity at serotonin receptors. Science 340, 615-619. https://doi.org/10.1126/science.1232808
- Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., Han, G.W., Liu, W., Huang, X.P., Vardy, E., et al. (2013a). Structural basis for molecular recognition at serotonin receptors. Science 340, 610-614. https://doi.org/10.1126/science.1232807
- Wang, C., Wu, H., Katritch, V., Han, G.W., Huang, X.P., Liu, W., Siu, F.Y., Roth, B.L., Cherezov, V., and Stevens, R.C. (2013b). Structure of the human smoothened receptor bound to an antitumour agent. Nature 497, 338-343. https://doi.org/10.1038/nature12167
- Wang, C., Wu, H., Evron, T., Vardy, E., Han, G.W., Huang, X.P., Hufeisen, S.J., Mangano, T.J., Urban, D.J., Katritch, V., et al. (2014). Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun. 5, 4355.
- Warne, T., Edwards, P.C., Leslie, A.G., and Tate, C.G. (2012). Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20, 841-849. https://doi.org/10.1016/j.str.2012.03.014
- White, J.F., Noinaj, N., Shibata, Y., Love, J., Kloss, B., Xu, F., Gvozdenovic-Jeremic, J., Shah, P., Shiloach, J., Tate, C.G., et al. (2012). Structure of the agonist-bound neurotensin receptor. Nature 490, 508-513. https://doi.org/10.1038/nature11558
- Wu, B., Chien, E.Y., Mol, C.D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F.C., et al. (2010). Structures of the CXCR4 Chemokine GPCR with Small- Molecule and Cyclic Peptide Antagonists. Science 330, 1066-1071. https://doi.org/10.1126/science.1194396
- Wu, H., Wacker, D., Mileni, M., Katritch, V., Han, G.W., Vardy, E., Liu, W., Thompson, A.A., Huang, X.P., Carroll, F.I., et al. (2012). Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485, 327-332. https://doi.org/10.1038/nature10939
- Wu, H., Wang, C., Gregory, K.J., Han, G.W., Cho, H.P., Xia, Y., Niswender, C.M., Katritch, V., Meiler, J., Cherezov, V., et al. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58-64. https://doi.org/10.1126/science.1249489
- Xu, F., Wu, H., Katritch, V., Han, G.W., Jacobson, K.A., Gao, Z.G., Cherezov, V., and Stevens, R.C. (2011). Structure of an agonistbound human A2A adenosine receptor. Science 332, 322-327. https://doi.org/10.1126/science.1202793
- Yin, J., Mobarec, J.C., Kolb, P., and Rosenbaum, D.M. (2015). Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519, 247-250. https://doi.org/10.1038/nature14035
- Zhang, Y., DeVries, M.E., and Skolnick, J. (2006). Structure modeling of all identified G protein-coupled receptors in the human genome. Plos Comput. Biol. 2, 88-99. https://doi.org/10.1371/journal.pcbi.0020088
- Zhang, C., Srinivasan, Y., Arlow, D.H., Fung, J.J., Palmer, D., Zheng, Y., Green, H.F., Pandey, A., Dror, R.O., Shaw, D.E., et al. (2012). High-resolution crystal structure of human protease-activated receptor 1. Nature 492, 387-392. https://doi.org/10.1038/nature11701
- Zhang, J., Zhang, K., Gao, Z.G., Paoletta, S., Zhang, D., Han, G.W., Li, T., Ma, L., Zhang, W., Muller, C.E., et al. (2014a). Agonistbound structure of the human P2Y12 receptor. Nature 509, 119-122. https://doi.org/10.1038/nature13288
- Zhang, K., Zhang, J., Gao, Z.G., Zhang, D., Zhu, L., Han, G.W., Moss, S.M., Paoletta, S., Kiselev, E., Lu, W., et al. (2014b). Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509, 115-118. https://doi.org/10.1038/nature13083
- Zhang, D., Gao, Z.G., Zhang, K., Kiselev, E., Crane, S., Wang, J., Paoletta, S., Yi, C., Ma, L., Zhang, W., et al. (2015a). Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520, 317-321. https://doi.org/10.1038/nature14287
- Zhang, H., Unal, H., Gati, C., Han, G.W., Liu, W., Zatsepin, N.A., James, D., Wang, D., Nelson, G., Weierstall, U., et al. (2015b). Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell 161, 833-844. https://doi.org/10.1016/j.cell.2015.04.011
피인용 문헌
- Recent Advances in Structure-Based Drug Design Targeting Class A G Protein-Coupled Receptors Utilizing Crystal Structures and Computational Simulations 2017, https://doi.org/10.1021/acs.jmedchem.6b01453
- Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target vol.11, pp.12, 2016, https://doi.org/10.1080/17460441.2016.1245289
- The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity vol.114, 2016, https://doi.org/10.1016/j.bcp.2016.04.005
- Production of G protein-coupled receptors in an insect-based cell-free system vol.114, pp.10, 2017, https://doi.org/10.1002/bit.26346
- Drug Binding Poses Relate Structure with Efficacy in the μ Opioid Receptor vol.429, pp.12, 2017, https://doi.org/10.1016/j.jmb.2017.05.009
- Dynamic roles for the N-terminus of the yeast G protein-coupled receptor Ste2p vol.1859, pp.10, 2017, https://doi.org/10.1016/j.bbamem.2017.07.014
- Membrane-spanning α-helical barrels as tractable protein-design targets vol.372, pp.1726, 2017, https://doi.org/10.1098/rstb.2016.0213
- Common evolutionary binding mode of rhodopsin-like GPCRs: Insights from structural bioinformatics vol.4, pp.4, 2017, https://doi.org/10.3934/biophy.2017.4.543
- Receptor antagonism/agonism can be uncoupled from pharmacoperone activity vol.434, 2016, https://doi.org/10.1016/j.mce.2016.07.003
- Evidence of Alternative Splicing as a Regulatory Mechanism for Kissr2 in Pejerrey Fish vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00604
- GPRC5A: An Emerging Biomarker in Human Cancer vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/1823726
- Serial Femtosecond Crystallography of G Protein–Coupled Receptors vol.47, pp.1, 2018, https://doi.org/10.1146/annurev-biophys-070317-033239
- Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2017.073
- 최적의 luminescence 신호 분석을 위한 유전자 전달 방법의 비교연구 vol.17, pp.11, 2015, https://doi.org/10.5762/kais.2016.17.11.640
- Phase-plate cryo-EM structure of a class B GPCR-G protein complex vol.546, pp.7656, 2015, https://doi.org/10.1038/nature22327
- Functional autoantibodies directed against cell surface receptors in systemic sclerosis vol.2, pp.3, 2015, https://doi.org/10.5301/jsrd.5000241
- Gonadotropin-releasing hormone analog therapeutics vol.70, pp.5, 2015, https://doi.org/10.23736/s0026-4784.18.04316-2
- Family C G-Protein-Coupled Receptors in Alzheimer’s Disease and Therapeutic Implications vol.10, pp.None, 2019, https://doi.org/10.3389/fphar.2019.01282
- Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug-Target Interactions vol.62, pp.1, 2019, https://doi.org/10.1021/acs.jmedchem.7b01844
- Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation vol.119, pp.9, 2019, https://doi.org/10.1021/acs.chemrev.8b00608
- Recent Advances in the Drug Discovery and Development of Dualsteric/ Bitopic Activators of G Protein-Coupled Receptors vol.19, pp.26, 2019, https://doi.org/10.2174/1568026619666191009164609
- Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists vol.5, pp.11, 2015, https://doi.org/10.1126/sciadv.aax9115
- Association between cannabis and the eyelids: A comprehensive review vol.48, pp.2, 2015, https://doi.org/10.1111/ceo.13687
- Neutrophil Signaling That Challenges Dogmata of G Protein-Coupled Receptor Regulated Functions vol.3, pp.2, 2015, https://doi.org/10.1021/acsptsci.0c00004
- Computational Investigations on the Binding Mode of Ligands for the Cannabinoid-Activated G Protein-Coupled Receptor GPR18 vol.10, pp.5, 2015, https://doi.org/10.3390/biom10050686
- GDP Release from the Open Conformation of Gα Requires Allosteric Signaling from the Agonist-Bound Human β2 Adrenergic Receptor vol.60, pp.8, 2020, https://doi.org/10.1021/acs.jcim.0c00432
- Establishing a sensitive fluorescence-based quantification method for cyclic nucleotides vol.20, pp.1, 2015, https://doi.org/10.1186/s12896-020-00633-y
- Ligand Docking Methods to Recognize Allosteric Inhibitors for G-Protein-Coupled Receptors vol.15, pp.None, 2015, https://doi.org/10.1177/11779322211037769
- Engineering an Allosteric Control of Protein Function vol.125, pp.7, 2015, https://doi.org/10.1021/acs.jpcb.0c11640
- A peptide of the N terminus of GRK5 attenuates pressure-overload hypertrophy and heart failure vol.14, pp.676, 2015, https://doi.org/10.1126/scisignal.abb5968
- Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases vol.26, pp.11, 2015, https://doi.org/10.3390/molecules26113407
- The human GPCR signal transduction network vol.10, pp.1, 2015, https://doi.org/10.1007/s13721-020-00278-z