DOI QR코드

DOI QR Code

3차원 동영상 압축 표준의 텍스쳐 비디오 우선 부호화 방식을 위한 변위 벡터 추정 기법

Disparity Vector Derivation Method for Texture-Video-First-Coding Modes of 3D Video Coding Standards

  • Kang, Je-Won (Ewha Womans University Department of Electronics Engieering)
  • 투고 : 2015.07.11
  • 심사 : 2015.10.13
  • 발행 : 2015.10.31

초록

본 논문에서는 3차원 비디오 압축을 위한 표준으로서 3D-AVC와 3D-HEVC에 채택된 주위 블록의 변위 벡터정보를 이용한 블록 기반의 변위 벡터 추정 기법 (Neighboring block-based disparity vector, NBDV)을 설명하고 성능을 평가하여 분석한다. NBDV에서는 시간적 공간적으로 인접한 주위 블록에서 부호화를 완료한 변위 움직임 벡터 (disparity motion vector)를 이용하여 변위 벡터로 변환한다. 변위 벡터는 인접 시점에서 현재 블록에 대응하는 블록을 지시하는 벡터로 시점간 통계적 연관성을 이용함으로써 3차원 동영상의 부호화 효율을 증대하는데 중요한 기능을 제공한다. 제안 기술은 저 복잡도와 동일 화질에서 약 20%의 부호화 효율 증가, 그리고 네트워크 내 미디어 게이트웨이의 효율적인 동작을 제공하는 텍스쳐 비디오 우선 부호화 방식을 지원하여 3차원 비디오 압축 표준 기술로 최종 채택되었다.

In 3D video compression, a disparity vector (DV) pointing a corresponding block position in an adjacent view is a key coding tool to exploit statistical correlation in multi-view videos. In this paper, neighboring block-based disparity vector (NBDV) is shown with detail algorithm descriptions and coding performance analysis. The proposed method derives a DV from disparity motion vector information, obtained from spatially and temporally neighboring blocks, and provides a significant coding gain about 20% BD-rate saving in a texture-video-first-coding scheme. The proposed DV derivation method is adopted into the recent 3D video coding standards such as 3D-AVC and 3D-HEVC as the state-of-the-art DV derivation method.

키워드

참고문헌

  1. A. Smolic, K. Mueller, P. Merkle, P. Kauff, and T. Wiegand, "An overview of available and emerging 3D video formats and depth enhanced stereo as efficient generic solution," in Proc. PCS 2009, pp. 1-4, Chicago, IL, 2009.
  2. G. Saygili, C. G. Gurler, and A. M. Tekalp, "Evaluation of asymmetric stereo video coding and rate scaling for adaptive 3D video streaming," IEEE Trans. Broadcasting, vol. 57, no. 2, pp. 593-601, 2011. https://doi.org/10.1109/TBC.2011.2131450
  3. P. Merkle, H. Brust, K. Dix, K. Muller, and T. Wiegand, "Stereo video compression for mobile 3D services," in Proc. 3D TV Conf., 2009.
  4. M. Tanimoto, "FTV standardization in MPEG," 3DTV-CON, pp. 1-4, Budapest, Jul. 2014.
  5. P. Carballeira, J. Gutierrez, F. Moran, J. Cabrera, and N. Garcia, "Subjective evaluation of super multiview video in consumer 3D displays," QoMEX, 2015.
  6. MVC Reference Software, document N10897 MPEG, Dec. 2009.
  7. P. Merkle, K. Muller, A. Smolic, and T. Weigand, "Efficient compression of multi-view video exploiting inter-view dependencies based on H.264/MPEG4-AVC," ICME, pp. 1717-1720, Toronto, Ont, Jul. 2006.
  8. Multi-View Video Plus Depth (MVD) Format for Advanced 3D Video Systems, Document JVT-W100 Joint Video Team, Apr. 2007.
  9. C. Fehn, "Depth-Image-Based Rendering (DIBR), compression and transmission for a new approach on 3D-TV," in Proc. SPIE Stereoscopic Displays and Virtual Reality Systems XI, vol. 5291, May 2004.
  10. J.-W. Kang, Y. Chen, Li. Zhang, and M. Karczewicz, "Low complexity neighboring block based disparity vector derivation in 3D-HEVC," in Proc. ISCAS, pp. 1921-1924, Melbourne, Jun. 2014.
  11. High Efficiency Video Coding, Rec. ITU-T H.265 and ISO/IEC 23008-2, Jan. 2013.
  12. M. M. Hannuksela, Y. Chen, T. Suzuki, J.-R. Ohm, and G. Sullivan, 3D-AVC Draft Text 8, in JCT-3V Document JCT3V-F1002, Nov. 2013.
  13. G. Tech, K. Wegner, Y. Chen, and S. Yea, 3D-HEVC Draft Text 2, in JCT-3V Document JCT3V-F1001, Nov. 2013.
  14. J.-W. Kang, Y. Chen, L. Zhang, X. Zhao, and M. Karczewicz, "Neighboring block based disparity vector derivation for multiview compatible 3D-AVC," in Proc. SPIE Electron., vol. 8856, San Diego, California, Aug. 2013.
  15. J.-W. Kang, "Disparity vector derivation for texture first coding mode in 3D video coding," IPIU Workshop, 2015.
  16. D. Rusanovskyy, M. M. Hannuksela, and W. Su, Depth-based coding of MVD data for 3D video extension of H. 264/AVC, 3D Research, Springer, Jun. 2013.
  17. K. Yamamoto, M. Kitahara, H. Kimata, T. Yendo, T. Fujii, M. Tanimoto, S. Shimizu, K. Kamikura, and Y. Yashima, "Multiview video coding using view interpolation and color correction," IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 11, pp. 1436-1449, Nov. 2007. https://doi.org/10.1109/TCSVT.2007.903802
  18. H. Schwarz and T. Wiegand, "Inter-view prediction of motion data in multiview video coding," in Picture Coding Symp., pp. 101-104, Krakow, Poland, May 2012.
  19. Test Model 7 of 3D-HEVC and MV-HEVC, ITU-T SG16 WP3 ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-G1005.
  20. J. Kang, Y. Chen, L. Zhang, and M. Karczewicz, 3D-CE2.h related: Enhanced disparity vector derivation, in JCT-3V Document JCT3V-C0050, Jan. 2013.
  21. Kang, Y. Chen, L. Zhang, and M. Karczewicz, CE2.h: CU-based Disparity Vector Derivation in 3D-HEVC, in JCT-3V Document JCT3VD0181, Mar. 2013.
  22. L. Zhang, Y. Chen, and M. Karczewicz, CE2.h related: Derived disparity vector for 3D-HEVC, in JCT-3V, Document JCT3VD0194, Apr. 2013.
  23. Y.-L. Chang, C.-L. Wu, Y.-P. Tsai, and S. Lei, 3D-CE1.h: Depth-oriented neighboring block disparity vector (DoNBDV) with virtual depth retrieval, in JCT-3V, Document JCT3V-C0131, Oct. 2012.
  24. L. Zhang, Y. Chen, V. Thirumalai, J.-L. Lin, Y.-W. Chen, J. An, S. Lei, L. Guillo, T. Guionnet, and C. Guillemot, "Inter-view motion prediction in 3D-HEVC," in Proc. ISCAS, Melbourne, Australia, Jun. 2014.
  25. X. Li, L. Zhang, and Y. Chen, "Advanced Residual Prediction in 3D-HEVC," in Proc Int. Conf. Image Process., Melbourne, Australia, pp. 1747-1751, Sept. 2013.
  26. D. Rusanovskyy, K. Muller, and A. Vetro, Common Test Conditions of 3DV Core Experiments, in JCT-3V, Document JCT3VC1100, Jan. 2013.

피인용 문헌

  1. 다중 디지털 신호의 비교를 위한 병렬 기법의 VLSI 설계 vol.21, pp.4, 2015, https://doi.org/10.6109/jkiice.2017.21.4.781