DOI QR코드

DOI QR Code

Multilevel Modulation Codes for Holographic Data Storage

홀로그래픽 데이터 저장장치에서의 멀티레벨 변조부호

  • Jeong, Seongkwon (School of Electronics Engineering, Soongsil University) ;
  • Lee, Jaejin (School of Electronics Engineering, Soongsil University)
  • 정성권 (숭실대학교 전자정보공학부) ;
  • 이재진 (숭실대학교 전자정보공학부)
  • Received : 2015.07.28
  • Accepted : 2015.09.03
  • Published : 2015.09.25

Abstract

The mutilevel holographic data storage offers considerable advantage for capacity, since it can store more than one bit per pixel. In this paper, we search the number of codewords for each code depending on three conditions: (1) the number of levels, (2) the number of pixels in a codeword, and (3) the minimum Euclidean distance of a code. Increasing the number of levels per pixel creates more capacity, while causing more errors, by reducing the noise margin. Increasing the number of pixels in a codeword can increase the code rate, which means more capacity, but increases the complexity of the encoder/decoder of the code. Increasing the minimum distance of a code reduces the detection error, while reducing the code rate of the code. In such a fashion, a system design will always have pros and cons, but our task is to find out an effective one under the given conditions for the system requirements. Therefore, the numbers we searched can provide some guidelines for effective code design.

멀티레벨 홀로그래픽 데이터 저장장치는 한 픽셀에 1비트 이상을 저장할 수 있기 때문에 용량에 대한 큰 장점을 갖는다. 본 논문에서는 (1) 레벨의 수, (2) 코드워드 내에서 픽셀의 수, (3) 최소 유클리디안 거리에 따른 코드워드들의 개수를 보여준다. 픽셀당 레벨의 수의 증가는 용량을 증가시키지만 노이즈 마진이 감소함에 따라 많은 에러를 발생시킨다. 코드워드에서 픽셀개수의 증가는 코드율을 증가시키며 용량을 늘리지만, 코드의 인코더와 디코더의 복잡도를 증가시킨다. 코드의 최소 거리 증가는 검출 에러를 줄이지만 코드율을 감소시킨다. 위와 같이 시스템 디자인은 항상 장 단점을 가지고 있지만, 시스템의 요구사항을 위해 주어진 상황에서 효과적인 방법을 찾아야 한다. 그러므로 본 논문에서 조사된 코드워드의 수는 효과적인 코드 디자인을 위한 가이드라인을 제시한다.

Keywords

References

  1. D. Gabor, "Associative holographic memories," IBM J. Res. Develop., pp.156-159, 1969.
  2. E. L. Kral, J. F.Walkup, and M. O. Hagler, "Correlation properties of random phase diffusers for multiplex holography," Appl. Opt., Vol. 21, no.7, pp. 1281-1290, April 1982. https://doi.org/10.1364/AO.21.001281
  3. A. E. Krasnov, "Thick-film phase holograms recorded by means of coded reference waves," Sov. J. Quantum. Electron., Vol. 7, no. 9, pp. 1147-1148, 1977. https://doi.org/10.1070/QE1977v007n09ABEH012821
  4. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE, Vol. 92, no. 8, pp. 1231-1280, August 2004. https://doi.org/10.1109/JPROC.2004.831212
  5. V. Vadde and B. V. K. V. Kumar, "Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage," Appl. Opt., Vol. 38, no. 20, pp. 4374-4386, July 1999. https://doi.org/10.1364/AO.38.004374
  6. N. Kim and J. Lee, "Two-dimensional codes for holographic data storage systems," J. KICS, Vol. 31, no. 11, pp. 1037-1043, November 2006.
  7. J. Kim and J. Lee, "Two-dimensional 5:8 modulation code for holographic data storage," Jpn. J. Appl. Phys., Vol. 48, no. 3, pp. 03A031, March 2009.
  8. J. Kim, J. Wee, and J. Lee, "Error correcting 4/6 modulation codes for holographic data storage," Jpn. J. Appl. Phys., Vol. 49, no. 8, pp. 08KB04, August 2010.
  9. J. Kim and J. Lee, "Partial response maximum likelihood detections using two-dimensional soft output Viterbi algorithm with two-dimensional equalizer for holographic data storage," Jpn. J. Appl. Phys., Vol. 48, no. 3, pp. 03A033, Mar. 2009.
  10. G. Burr, G. Barking, H. Coufal, J. Hoffnagle, C. Jefferson, and M. Neifeld, "Gray-scale data pages for digital holographic data storage," Opt. Lett., Vol. 23, no. 15, pp. 1218-1220, August 1998. https://doi.org/10.1364/OL.23.001218
  11. B. King, G. Burr, and M. Neifeld, "Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage," Appl. Opt., Vol. 42, no. 14, pp. 2546-2559, May 2003. https://doi.org/10.1364/AO.42.002546