DOI QR코드

DOI QR Code

Application of hydraulic cylinder testing to determine the geotechnical properties of earth-filled dams

  • Rodriguez, Roman F. (Research Group of Ground Engineering, Mining Engineering School, University of Oviedo) ;
  • Nicieza, Celestino G. (Department of Exploitation and Prospecting Mines, Mining Engineering School, University of Oviedo) ;
  • Gayarre, Fernando L. (Department of Construction and Manufacture Engineering, Engineering School of Gijon, Viesques Campus) ;
  • Lopez, Francisco L. Ramos (Department of Physics, Engineering School of Gijon, Viesques Campus)
  • Received : 2014.12.18
  • Accepted : 2015.06.05
  • Published : 2015.10.25

Abstract

This article describes a new in-situ load test called the Hydraulic Cylinder Test (HCT) and its application to determine the geotechnical properties of soil-rock mixtures. The main advantages of the test are its easy implementation, speed of execution and low-cost. This article provides a detailed description of the equipment and the test procedure, and examines a case study of its application to determine the geotechnical properties of an earth-filled dam for a tailings pond. The containment dams of the ponds are made from blocks of gypsum and marl, obtained from the excavation of the ponds, mixed in a matrix of sands and clays. The size of the rocks varies between 1 and 30 cm. The HCT is particularly useful for determining the geotechnical properties of this type of soil-rock mixture. Nine HCTs were carried out to determine its strength (c, ${\phi}$) and deformation (B, G) properties. The results obtained were validated using the Bim strength criterion, recently proposed, and some pressure meter tests carried out beforehand. The properties obtained are used to analyze the stability of the dam using computer simulations and a modification to its design is proposed.

Keywords

References

  1. Briaud, J.L. (1992), The Pressuremeter, A.A. Balkema; Rotterdam, South Holland, Netherlands.
  2. Campanella, R.G. and Robertson, P.K. (1981), "Applied Cone Research", Proceedings of Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, New York, NY, USA, October.
  3. Castelli, F. and Maugeri, M. (2014), "Mechanical properties of municipal solid waste by SDMT", Waste Manag., 34(2), 256-265. https://doi.org/10.1016/j.wasman.2013.10.026
  4. Clarke, B.G. (1995), Pressuremeters In Geotechnical Design, Blackie Academic & Professional, Chapman & Hall, London, UK.
  5. Coli, N., Berry, P. and Boldini, D. (2011), "In situ non-conventional shear tests for the mechanical characterisation of a bimrock", Int. J. Rock Mech. Min. Sci., 48(1), 95-102. https://doi.org/10.1016/j.ijrmms.2010.09.012
  6. DB SE-C (2007), Structural Safety: Foundations, Ministerio de Fomento; Gobierno de Espana, Spain [In Spanish]
  7. ES 2 351 498 A1 (2011), Metodo y sistema para la realizacion de ensayos in situ y caracterizacion de terrenos heterogeneos o macizos rocosos intensamente fracturados, Patente de Invencion con examen previo $n^{\circ}$ 2351498 Oficina Espanola de Patentes y Marcas; Madrid, Spain. [In Spanish]
  8. Fakhimi, A., Boakye, K., Sperling, D. and McLemore, V. (2008), "Development of a modified in situ direct shear test technique to determine shear strength of mine rock piles", Geotech. Test. J., 31(3), 1-5.
  9. Geo-Slope International (2004), SLOPE User Manual, Geo-Slope International; Calgary, AB, Canada.
  10. Gonzalez-Nicieza, C., Prendes-Gero, M.B., Fernandez-Rodriguez, R. and Lopez-Gayarre, F. (2013), "New test for the characterization of highly jointed rock masses", The 2013 ISRM International Symposium - Rock Mechanics for Resources, Energy and Environment, Wroclaw, Poland, September.
  11. Itasca Consulting Group, Inc. (2005), FLAC 3D User's Manual, (2nd Edition), Itasca, MN, USA.
  12. ITC 08.02.01 (2001) Depositos de lodos en procesos de tratamiento de industrias extractivas, Instruccion Tecnica Complementaria del Reglamento General de Normas Basicas de Seguridad Minera; Ministerio de Industria y Energia, Gobierno de Espana, Spain. [In Spanish]
  13. Kalender, A., Sonmez, H., Medley, E., Tunusluoglu, C. and Kasapoglu, K.E. (2014), "An approach to predicting the overall strengths of unwelded bimrocks and bimsoils", Eng. Geol., 183, 65-79. https://doi.org/10.1016/j.enggeo.2014.10.007
  14. Kowalczyk, S., Maslakowski, M. and Tucholka, P. (2014), "Determination of the correlation between the electrical resistivity of non-cohesive soils and the degree of compaction", J. Appl. Geophys., 110, 43-50. https://doi.org/10.1016/j.jappgeo.2014.08.016
  15. Li, X., Liao, Q.L. and He, J.M. (2004), "In-situ tests and a stochastic structural model of rock and soil aggregate in the three gorges reservoir area", China Int. J. Rock Mech. Min. Sci., 41(3), 702-707. https://doi.org/10.1016/j.ijrmms.2004.03.122
  16. Marchetti, S. (1980), "In situ tests by flat dilatometer", J. Geotech. Eng. Div. ASCE, 106(3), 299-321.
  17. Marchetti, S. (2014), "The Seismic Dilatometer For In Situ Soil Investigations", Proceedings of Indian Geotechnical Conference IGC-2014, Kakinada, India, December.
  18. NCSE-02 (2002), Norma de construccion sismoresistente: parte general y de edificacion, Ministerio de Fomento; Gobierno de Espana, Spain. [In Spanish]
  19. Pells, P.J.N. (1983), "Plate-loading tests on soil and rock", Proceedings of Extension Course in situ Testing for Geotechnical Investigations, Sydney, Australia, May-June.
  20. Ramirez-Oyanguren, P., Gonzalez-Nicieza, C., Alvarez-Fernandez, M.I. and Gonzalez-Palacio, C. (2008), "Stability analysis of Llerin rockfill dam: an in situ direct shear test", Eng. Geol., 100(3-4), 120-130. https://doi.org/10.1016/j.enggeo.2008.02.009
  21. Schneider, J.A., Mayne, P.W. and Rix, G.J. (2001), "Geotechnical site characterization in the greater Memphis area using cone penetration tests", Eng. Geol., 62(1-3), 169-184. https://doi.org/10.1016/S0013-7952(01)00060-6
  22. Unal, E. (1997), "Determination of in situ deformation modulus: new approaches for plate-loading tests", Int. J. Rock Mech. Min. Sci., 34(6), 897-915. https://doi.org/10.1016/S1365-1609(97)80003-2
  23. Wen-Jie, X., Qiang, X. and Rui-Lin, H. (2011), "Study on the shear strength of soil-rock mixture by large scale direct shear test", Int. J. Rock Mech. Min. Sci., 48(8), 1235-1247. https://doi.org/10.1016/j.ijrmms.2011.09.018
  24. Xu, W., Hu, R. and Tan, R. (2007), "Some geomechanical properties of soil-rock mixtures in the Hutiao Gorge area, China", Geotechnique, 57(3), 255-264. https://doi.org/10.1680/geot.2007.57.3.255

Cited by

  1. Failure analysis of a cracked concrete pipe in a 50 MW thermosolar power plant vol.79, 2017, https://doi.org/10.1016/j.engfailanal.2017.04.005
  2. Coupling relevance vector machine and response surface for geomechanical parameters identification vol.15, pp.6, 2018, https://doi.org/10.12989/gae.2018.15.6.1207
  3. Pseudo seismic and static stability analysis of the Torul Dam vol.17, pp.2, 2015, https://doi.org/10.12989/gae.2019.17.2.207