References
- Arun, K.J. and Reddi, L.N. (2011), "Finite-depth seepage below flat aprons with equal end cutoffs", J. Hydraul. Eng, 137(12), 1659-1667. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000459
- ASCE Task Committee (2000), "Artificial neural networks in hydrology, II: Hydrologic applications", J. Hydrol. Eng., 5(2), 124-137. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
- Ataie-Ashtiani, B., Volker, R.E. and Lockington, D.A. (1999), "Numerical and experimental study of seepage in unconfined aquifers with a periodic boundary condition", J. Hydrol., 222(1-4), 165-174. https://doi.org/10.1016/S0022-1694(99)00105-5
- Ayoubloo, M.K., Azamathulla, H.Md., Jabbari, E. and Mahjoobi, J. (2011), "Model tree approach for estimation of critical submergence for horizontal intakes in open channel flows", Expert Syst. Appl., 38(8), 10114-10123. https://doi.org/10.1016/j.eswa.2011.02.073
- Aziz, A.R.A. and Wong, K.V. (1992), "A neural-network approach to the determination of aquifer parameters", J. Ground Water, 30(2), 164-166. https://doi.org/10.1111/j.1745-6584.1992.tb01787.x
- Azamathulla, H.Md., Deo, M.C. and Deolalikar, P.B. (2005), "Neural networks for estimation of scour downstream of ski-jump bucket", J. Hydraul. Eng., 131(10), 898-908. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:10(898)
- Azamathulla, H.Md., Deo, M.C. and Deolalikar, P.B. (2006), "Estimation of scour below spillways using neural networks", IAHR, J. Hydraul. Res., 44(1), 61-69. https://doi.org/10.1080/00221686.2006.9521661
- Azamathulla, H.Md., Deo, M.C. and Deolalikar, P.B. (2008), "Alternative neural networks to estimate the scour below spillways", Adv. Eng. Software, 39(8), 689-698. https://doi.org/10.1016/j.advengsoft.2007.07.004
- Azamathulla, H.Md. and Zakaria, N.A. (2011), "Prediction of scour below submerged pipeline crossing a river using ANN", IWA - Water Sci. Technol., 63(10), 2225-2230. https://doi.org/10.2166/wst.2011.459
- Bhatti, M.A. (2005), Fundamental Finite Element Analysis and Applications With Mathematica and Matlab Computations, John Wiley & Sons Inc., Hoboken, NJ, USA.
- Caudill, M. and Butler, C. (Eds.) (1987), IEEE First International Conference on Neural Networks, San Diego, CA, USA.
- Chang, Y.Ch., Chen, G.Y. and Yeh, H.D. (2010), "Transient flow into a partially penetrating well during the constant-head test in unconfined aquifers", J. Hydraul. Eng., 137(9), 1054-1064.
- Childs, E.C. and Collins-George, N. (1950), "The permeability of porous materials", Proc. R. Soc. London, 201(A), 392-405. https://doi.org/10.1098/rspa.1950.0068
- Cooley, R.L. (1971), "A finite difference method for unsteady flow in variably saturated porous media: application to a single pumping well", Water Resour. Res., 7(6), 1607-1625. https://doi.org/10.1029/WR007i006p01607
- Dolling, O.R. and Varas, E.A. (2002), "Artificial neural networks for streamflow prediction", J. Hydraul. Res., 40(5), 547-554. https://doi.org/10.1080/00221680209499899
- Fredlund, D.G. and Rahardjo, H. (1993), Soil Mechanics for Unsaturated Soils, Wiley, Chichester, pp. 136-140.
- Geo-Slope International (2001), Seep3D Software (Version 1), Calgary, AL, Canada.
- Ghobadi, M.H., Khanlari, G.R. and Djalaly, H. (2005), "Seepage problems in the right abutment of the Shahid Abbaspour", Eng. Geol., 82(2), 119-126. https://doi.org/10.1016/j.enggeo.2005.09.002
- Honjo, Y., Giao, P.H. and Naushahi, P.A. (1995), "Seepage analysis of Tarbela dam (Pakistan) using finite element method", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32(3), 131A.
- Jain, A. and Reddi, L. (2011), "Finite-depth seepage below flat aprons with equal end cutoffs", J. Hydraul. Eng., 137(6), 1659-1668. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000459
- Jain, S.K. (2001), "Development of integrated sediment rating curves using ANNs", J. Hydraul. Eng., 127(1), 30-37. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:1(30)
- Krikland, M.R., Hills, R.G. and Wierenga, P.J. (1992), "Algorithms for solving Richard's equation for variably saturated soils", Water Resour. Res., 28(8), 2049-2058. https://doi.org/10.1029/92WR00802
- Li, L., Barry, D.A. and Pattiaratchi, C.B. (1997), "Numerical modeling of tidal-induced beach water table fluctuations", Coast. Eng., 30(1-2), 105-123. https://doi.org/10.1016/S0378-3839(96)00038-5
- Money, R.L. (2006), "Comparison of 2D and 3D Seepage model results for excavation near levee toe", GeoCongress, Atlanta, GA, USA, pp. 1-4.
- Nagy, H.M., Watanabe, K. and Hirano, M. (2002), "Prediction of sediment load concentration in rivers using artificial neural network model", J. Hydraul. Eng., 128(6), 588-595. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(588)
- Panthulu, T.V., Krishnaiah, C. and Shirke, J.M. (2001), "Detection of seepage paths in earth dams using self-potential and electrical resistivity methods", Eng. Geol., 59(3-4), 281-295. https://doi.org/10.1016/S0013-7952(00)00082-X
- Rajurkar, M.P., Kothyari, U.C. and Chaube, U.C. (2002), "Artifical neural networks for daily rainfall-runoff modeling", Hydrol. Sci. J., 47(6), 865-878. https://doi.org/10.1080/02626660209492996
- Rajurkar, M.P., Kothyari, U.C. and Chaube, U.C. (2004), "Modeling of daily rainfall-runoff relationship with artificial neural network", J. Hydrol., 285(1-4), 96-113. https://doi.org/10.1016/j.jhydrol.2003.08.011
- Rubin, J. (1968), "Theoretical analysis of two-dimensional, transient flow of water in unsaturated and partly saturated soils", Soil Sci. Soc. Am. Proc., 32(5), 607-615. https://doi.org/10.2136/sssaj1968.03615995003200050013x
- Tayfur, G. (2002), "Artificial neural networks for sheet sediment transport", Hydrol. Sci. J., 47(6), 879-892. https://doi.org/10.1080/02626660209492997
- Tayfur, G., Swiatek, D., Wita, A. and Singh, V.P. (2005), "Case study: Finite element method and artificial neural network models for flow through Jeziorsko Earthfill Dam in Poland", J. Hydrol., 131(6), 431-440.
- Tien-Kuen, H. (1996), "Stability analysis of an earth dam under steady state seepage", Comput. Struct., 58(6), 1075-1082. https://doi.org/10.1016/0045-7949(95)00230-8
- Tokar, A.S. and Johnson, P.A. (1999), "Rainfall-runoff modeling using artificial neural networks", J. Hydrol. Eng., 4(3), 232-239. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:3(232)
- Turkmen, S., Ozguler, E., Taga, H. and Karaogullarindan, T. (2002), "Seepage problems in the karstic limestone foundation of the Kalecik Dam (South Turkey)", Eng. Geol., 63(3-4), 247-257. https://doi.org/10.1016/S0013-7952(01)00085-0
- Xu, Y.Q., Unami, K. and Kawachi, T. (2003) "Optimal hydraulic design of earth dam cross section using saturated-unsaturated seepage flow model", Adv. Water Resour., 26(1), 1-7. https://doi.org/10.1016/S0309-1708(02)00124-0
Cited by
- Tunnelling on terrace soil deposits: Characterization and experiences on the Bogota-Villavicencio road vol.15, pp.3, 2015, https://doi.org/10.12989/gae.2018.15.3.899
- THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network vol.16, pp.4, 2015, https://doi.org/10.12989/gae.2018.16.4.363
- Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils vol.20, pp.5, 2015, https://doi.org/10.12989/gae.2020.20.5.385
- Three-dimensional nonlinear flow numerical simulation considering the distribution of interlayer shear weakness zones: a case study in Baihetan hydropower project, China vol.81, pp.1, 2015, https://doi.org/10.1007/s10064-021-02513-x