DOI QR코드

DOI QR Code

Development of robust flocking control law for multiple UAVs using behavioral decentralized method

다수 무인기의 행위 기반 강인 군집비행 제어법칙 설계

  • Shin, Jongho (Agency for Defense Development) ;
  • Kim, Seungkeun (Department of Aerospace Engineering, Chungnam National University) ;
  • Suk, Jinyoung (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2015.01.13
  • Accepted : 2015.09.16
  • Published : 2015.10.01

Abstract

This study proposes a robust formation flight control technique of multiple unmanned aerial vehicles(UAVs) using behavior-based decentralized approach. The behavior-based decentralized method has various advantages because it utilizes information of neighboring UAVs only instead of information of whole UAVs in the formation maneuvering. The controllers in this paper are divided into two methods: first one is based on position and velocity of neighboring UAVs, and the other one is based on position of neighboring UAVs and passivity technique. The proposed controllers assure uniformly ultimate boundedness of closed-loops system under time varying bounded disturbances. Numerical simulations are performed to validate the effectiveness of the proposed method.

본 논문은 행위 기반 분산 기법(behavior-based decentralized method)을 활용하여 복수 무인기의 군집 비행을 위한 강인 제어기를 제안한다. 행위 기반 분산 기법을 활용한 복수 무인기의 군집 비행은 주변 무인기들의 정보만을 활용하여 편대를 이루게 되므로 많은 장점을 갖는다. 본 논문에서는 무인기 시스템에 크기가 제한된 시변 외란(time varying bounded disturbance)이 존재하는 상황에서, 주변 무인기들의 위치와 속도를 모두 활용하는 경우와 위치만을 활용하는 경우로 나뉘어 제어기를 설계하며, 위치만을 활용하는 경우 passivity 기법을 적용하여 제어기를 설계한다. 제안된 제어기는 시간에 의존하는 제한된 외란이 존재하는 상황에서 전체 폐루프 시스템의 uniformly ultimate boundedness 특성을 보장한다. 수치 시뮬레이션을 통해 제안된 제어기법의 타당성을 검증한다.

Keywords

References

  1. F. Giulietti, L. Pollini, and M. Innocenti, "Autonomous Formation Flight," IEEE Control Systems Magazine, Vol. 20, No. 6, 2000, pp. 34-44. https://doi.org/10.1109/37.887447
  2. A. Dogan, and S. Venkataramanan, "Nonlinear Control for Reconfiguration of Unmanned-Aerial-Vehicle Formation," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 667-678. https://doi.org/10.2514/1.8760
  3. M. Patcher, J. D'Azzo, and M. Veth, "Proportional and Integral Control of Nonlinear Systems," International Journal of Control, Vol. 64, No. 4, 1996, pp. 679-692. https://doi.org/10.1080/00207179608921649
  4. A.W. Bloy, and M. Jouma'a, "Lateral and Directional Stability and Control in Air-to-air Refueling," Journal of Aerospace Engineering, Vol. 209, 1995, pp. 299-305.
  5. S. Kim, and Y. Kim, "Three dimensional optimum controller for multiple UAV formation flight using behavior-based decentralized approach." International Conference on Control, Automation and Systems, 2007.
  6. S. Kim and Y. Kim, "Behavioral Decentralized Optimum Controller Design for UAV Formation Flight," Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 36, No. 6, 2008, pp. 565-573. https://doi.org/10.5139/JKSAS.2008.36.6.565
  7. S. Kim, and Y. Kim. "Optimum design of three-dimensional behavioural decentralized controller for UAV formation flight," Engineering Optimization, Vol. 41, No. 3, 2009, 199-224. https://doi.org/10.1080/03052150802406532
  8. J. R. T. Lowton, R. W. Beard, and B. J. Young, "A Decentralized Approach to Formation Maneuvers," IEEE Transactions On Robotics and Automation, Vol. 19, No. 6, 2003, pp. 933-941. https://doi.org/10.1109/TRA.2003.819598
  9. R. L. Raffard, C. J. Tomlin, and S. P. Boyd, "Distributed Optimization for Cooperative Agents: Application to Formation Flight," IEEE Conference on Decision and Control, Nassau, Bahamas, 2004.
  10. W. Ren, and R. Beard, "Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach," Journal of Guidance, Control, and Dynamics, Vol. 27, No. 1, 2004, pp. 73-82. https://doi.org/10.2514/1.9287
  11. F. Giulietti, L. Pollini, and M. Innocenti, "Formation Flight Control: A Behavioral Approach," AIAA Guidance, Navigation, and Control Conference, Montreal, Canada, 2001.
  12. J. D. Wolfe, D. F. Chichka, and J. L. Speyer, "Decentralized Controllers for Unmanned Aerial Vehicle Formation Flight," AIAA Guidance, Navigation, and Control Conference, San Diego, CA, 1996.
  13. T. Lee, "Robust adaptive tracking on SO(3) with an application to the attitude dynamics of a quadrotor UAV," IEEE Transactions on Control Systems Technology, vol. 21, no. 5, 2013, pp.1924-1930. https://doi.org/10.1109/TCST.2012.2209887
  14. R. A. Horn ; C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985.
  15. H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, Upper Saddle River, NJ, 2002.

Cited by

  1. Formation control of UAVs based on artificial potential field vol.189, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201818910018