DOI QR코드

DOI QR Code

Stabilization of Soil Moisture and Improvement of Indoor Air Quality by a Plant-Biofilter Integration System

식물-바이오필터에 의한 토양수분 안정화 및 실내 공기질 향상

  • Lee, Chang Hee (Dept. of Horticulture, Hankyong National University) ;
  • Choi, Bom (Dept. of Horticulture, Hankyong National University) ;
  • Chun, Man Young (Dept. of Environmental Engineering, Hankyong National University)
  • Received : 2015.02.24
  • Accepted : 2015.05.22
  • Published : 2015.10.31

Abstract

This study was performed to investigate the stability of soil moisture in controlling air ventilation rate within a horizontal biofilter, and to compare removal efficiency (RE) of indoor air pollutants including fine dust, volatile organic compounds (VOCs), and formaldehyde (HCHO), depending on whether dieffenbachias (Diffenbachia amoena) were planted in the biofilter. The relative humidity, air temperature, and soil moisture contents showed stable values, regardless of the presence of D. amoena, and the plants grew normally in the biofilter. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter filled with only soil were at least 30% and 2%, respectively. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter including the plants were above 40% and 4%, respectively. RE for fine dust (PM10) weight was above 4% and 20%, respectively, in the biofilter containing only soil or soil together with plants. In the case of the biofilter filled with only soil, REs for xylene, ethylbenzene, toluene or total VOC (T-VOC) were each more than 63%; however, REs for benzene and formaldehyde (HCHO) were above 22% and 38%, respectively. In the biofilter with the plants, REs for xylene, ethylbenzene, toluene, and T-VOC were each above 72%, and REs for benzene and HCHO were above 39%. Thus, RE of the biofilter integrated with plants was found to be higher for volatile organic compounds than for fine dust. Hence, the biofilter was very effective for indoor air quality improvement and the effect was higher when integrated with plants.

본 연구는 평면형 바이오필터를 설계하여 제작하고 이 바이오필터에 디펜바키아(Dieffenbachia amoena 'Marianne')의 식재 여부에 따라 환기 용량을 제어할 수 있는 토양 수분 안정화 정도를 측정하고 미세먼지, 휘발성 유기화합물 및 포름알데히드(HCHO)와 같은 실내공기 오염물질에 대한 바이오필터의 제거율을 비교하였다. 실험 결과 디펜바키아의 식재 여부에 관계없이 모두 일정한 상대습도, 온도 및 토양 수분 함량을 나타내었고 이 바이오필터에 식재한 디펜바키아도 정상적으로 생육하였다. 바이오필터에 의한 미세먼지 제거율을 보면, 미세먼지(PM10)와 초미세먼지(PM2.5)의 입자 수는 토양만 있는 경우 각각 30%와 2% 이상 제거되었고, 디펜바키아를 식재한 경우도 각각 40%와 4% 이상 제거되었다. 미세먼지(PM10) 무게에 따른 제거율은 토양만 있는 경우 4% 이상, 디펜바키아를 식재한 경우 20% 이상으로 나타났다. 토양만 채운 바이오필터는 xylene, ethylbenzene, toluene, total volatile organic compounds(T-VOCs)를 63% 이상 제거하였으나 benzene은 22% 이상, HCHO는 38% 이상을 제거하였다. 디펜바키아를 식재한 바이오필터는 xylene, ethylbenzene, toluene, T-VOCs를 72% 이상 제거하였고 benzene과 HCHO도 39% 이상 제거하였다. 따라서 식물과 바이오 필터를 결합한 시스템은 미세먼지의 제거보다 휘발성 유기 화합물의 제거에 대한 효과가 더 높은 것으로 나타났다. 본 연구에서 제작한 평면형 바이오필터는 실내 공기질 정화에 매우 효과가 있는 것으로 나타났으며, 식물과 바이오필터를 결합하였을 때 그 효과는 더욱 큰 것으로 확인하였다.

Keywords

References

  1. Arnold, M., A. Reittu, A. Von Wright, P.J. Martikainen, and M.L. Suikho. 1997. Bacterial degradation of styrene in waste gases using a peat filter. Appl. Microbiol. Biotechnol. 48:738-744. https://doi.org/10.1007/s002530051126
  2. Baik, J., E.J. Jang, and C.H. Pak. 2003. Plant stresses of two Araceae foliage plants cultured by hydroculture and plant activity compared with soil culture. Kor. J. Hort. Sci. Technol. 21:341-345.
  3. Bang, S.W., J.Y. Kim, J.E. Song, K.J. Kim, and D.H. Kim. 2013. Effect of the bio green wall system for the improvement of indoor environment. J. Korean Soc. People Plants Environ. 16:415-420. https://doi.org/10.11628/ksppe.2013.16.6.415
  4. Bea, G.N. and J.H. Ji. 2013. Management policy and control technology for indoor air quality in Korea. J. Korean Soc. Atmos. Environ. 29:378-389. https://doi.org/10.5572/KOSAE.2013.29.4.378
  5. Cardenas-Gonzalez, B. 1999. Characterization of compost biofilter media. Ph.D. Diss., Department of Civil and Environmental Engineering. Univ. of Massachusetts, Amherst, Massachusetts, USA.
  6. Choi, B., M.Y. Chun, and C.H. Lee. 2014. Evaluation for soil moisture stabilization and plant growth response in horizontal biofiltraton system depending on wind speed and initial soil moisture. Korean J. Plant Res. 27:546-555. https://doi.org/10.7732/kjpr.2014.27.5.546
  7. Chun, M.Y. and C.H. Lee. 2014. Water supply system for biofilter flowerpot. Patent serial No. 10-1418679.
  8. Darlington, A.B., J.F. Dat, and M.A. Dixon. 2001. The biofiltration of indoor air: air flux and temperature influences the removal of toluene, ethylbenzene and xylene. Environ. Sci. Technol. 35:240-246. https://doi.org/10.1021/es0010507
  9. Delhomenie, M.C. and M. Heitz. 2005. Biofiltration of air: a review. Crit. Rev. Biotechnol. 25:53-72. https://doi.org/10.1080/07388550590935814
  10. Delhomenie, M.C., L. Bibeau, J. Gendron, R. Brzezinski, and M. Heitz. 2001. Influence of nitrogen on the degradation of toluene in a compost-based biofilter. J. Chem. Technol. Biotechnol. 76:997-1006. https://doi.org/10.1002/jctb.472
  11. Delhomenie, M.C., L. Bibeau, N. Bredin, S. Roy, S. Brousseau, J.L. Kugelmass, R. Brzezinski, and M. Heitz. 2002. Biofiltration of air contaminated with toluene on a compost-based bed. Adv. Environ. Res. 6:239-244. https://doi.org/10.1016/S1093-0191(01)00055-7
  12. Deshusses, M.A., C.T. Johnson, and G. Leson. 1999. Biofiltration of high loads of ethyl acetate in the presence of toluene. J. Air Waste Manag. Assoc. 49:973-979. https://doi.org/10.1080/10473289.1999.10463869
  13. Hong, J., J.S. Lee, and C.H. Pak. 2005. Selection of indigenous plants tolerant to volatile organic compounds and their purifying mechanisms in indoor environment. Kor. J. Hort. Sci. Technol. 23:97-103.
  14. Jang, H.S., S.K. Shin, J.H. Song, and S.J. Hwang. 2006. Biodegradation of VOC mixtures using a bioactive foam reactor II. Ksce J. Civ. Eng. 26:695-701.
  15. Kennes, C. and F. Thalasso. 1998. Waste gas biotreatment technology. J. Chem. Technol. Biotechnol. 72:303-319. https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<303::AID-JCTB903>3.0.CO;2-Y
  16. Kil, M.J., K.J. Kim, J.K. Cho, and C.H. Park. 2008a. Formaldehyde gas removal effects and physiological responses of Fatsia japonica and Epipremnum aureum according to various light intensity. Kor. J. Hort. Sci. Technol. 26:189-196.
  17. Kil, M.J., K.J. Kim, C.H. Pak, H.H. Kim, and Y.W. Lim. 2008b. Effects of growing media and exposure frequency on the volatile formaldehyde removal in potted Epipremnum aureum. Kor. J. Hort. Sci. Technol. 26:325-330.
  18. Kim, K.J., M.I. Jung, D.W. Lee, H.D. Kim, E.H. Yoo, S.J. Jung, S.W. Han, and S.Y. Lee. 2009. Water absorption and water diffusion by irrigation system in the planters for indoor plants. J. Korean Soc. People Plant Environ. 12:57-63.
  19. Kim, K.J., M.J. Kil, J.S. Song, and E.H. Yoo. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Am. Soc. Hortic. Sci. 133:521-526.
  20. Lee, E.Y., Y.S. Jun, K.S. Cho, and H.W. Ryu. 2002. Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J. Air Waste Manag. Assoc. 52:400-406. https://doi.org/10.1080/10473289.2002.10470796
  21. Lee, J.H. 2006. System of phyto-filter for removing indoor air pollutants. J. Korean Inst. Inter. Landsc. Archit. 8:9-16.
  22. Lee, J.H. and I.S. Joe. 2008. A study on development of biofilter system for removing indoor air pollution used by plants. J. Korean Soc. People Plants Environ. 11:33-46.
  23. Lohr, V.I. and C.H. Pearson-Mims. 1996. Particulate matter accumulation on horizontal surfaces in interiors: Influence of foliage plants. Atmos. Environ. 30:2565-2568. https://doi.org/10.1016/1352-2310(95)00465-3
  24. Ministry of Environment (MOE). 2014. Environment white paper. Ministry of Environment, Korea.
  25. Mohseni, M. and D.G. Allen. 2000. Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chem. Eng. Sci. 55:1545-1558. https://doi.org/10.1016/S0009-2509(99)00420-0
  26. Morales, M., G. Frere, M.E. Acuna, F. Perez, S. Revah, and R. Auria. 1996. Influence of mixing on the removal rate of toluene vapors by biofiltration. In: Proceedings of the 89th Annual Meeting & Exhibition of the Air & Waste Management Association. June 23-26, 1996. Nashville. Air & Waste Manag. Assoc. Pittsburgh, PA, USA.
  27. Myung, S.W., Y.S. Nam, Y.W. Lee, and H.S. Choi. 2003. Removal characteristics of toluene in biofilters packed with reticulated- PU-foams of different porosities. Korean J. Biotechnol. Bioeng. 18:448-454.
  28. Nieuwenhuis, M., K. Craig, P. Tom, and S.H. Alexander. 2014. The relative benefits of green versus lean office space: three field experiments. J. Exp. Psychol. 20:119-214.
  29. Oh, Y.S., S.C. Choi, and Y.K. Kim. 1998. Degradation of gaseous BTX by biofiltration with Phanerochaete chrysosporium. J. Microbiol. 36:34-38.
  30. Oh, Y.S., Z. Shareefdeen, B.C. Baltzis, and R. Bartha. 1994. Interactions between benzene, toluene and p-xylene (BTX) during their biodegradation. Biotechnol. Bioeng. 44:533-538. https://doi.org/10.1002/bit.260440417
  31. Ottengraf, S.P.P. 1986. Exhaust gas purification, p. 426-452. In: Biotechnology, a Comprehensive Treatise in 8 Volumes. Rehm, H.J. and G. Reed (eds.). Verlag Chemie. Weinheim, Germany.
  32. Park, D.W., S.S. Kim, S. Haam, I.S. Ahn, E.B. Kim, and W.S. Kim. 2002. Biodegradation of toluene by a lab-scale biofilter inoculated with Pseudomonas putida DK-1. Environ. Technol. 23:309-318. https://doi.org/10.1080/09593332508618411
  33. Park, S.A., M.G. Kim, M.H. Yoo, M.M. Oh, and K.C. Son. 2010. Comparison of indoor $CO_2$ removal capability of five foliage plants by photosynthesis. Kor. J. Hort. Sci. Technol. 28:864-870.
  34. Pedersen, A.R., S. Moller, S. Molin, and E. Arvin. 1997. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment. Biotechnol. Bioeng. 54:131-142. https://doi.org/10.1002/(SICI)1097-0290(19970420)54:2<131::AID-BIT5>3.0.CO;2-M
  35. Sabo, F., U. Motz, and K. Fisher. 1993. Development and testing of high efficiency biofilters. In: Proceedings of the 89th Annual Meeting & Exhibition of the Air & Waste Management Association. June 13-18, 1993. Denver. Air & Waste Manag. Assoc. Pittsburgh, PA, USA.
  36. Saebo, A., R. Popek, B. Nawrot, H.M. Hanslin, H. Gawronska, and S.W. Gawronski. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 427:347-354.
  37. Smith W.H. and B.J. Staskawicz. 1977. Removal of atmospheric particles by leaves and twigs of urban trees: some preliminary observations and assessment of research needs. Environ. Manage. 1:317-330. https://doi.org/10.1007/BF01865859
  38. Sohn, J.R., M.B. Jang, and K.M. Cho. 2004. The characteristics of biodegradation for VOCs in unsaturated soil by bio-filter. Korean J. Sanit. 19:19-24.
  39. Song, J.E., S.W. Han, Y.S. Kim, and J.Y. Sohn. 2005. The effect of phytofiltration system on the improvement of indoor air quality. Kieae J. 5:3-8.
  40. Swanson, W.J. and R.C. Loehr. 1997. Biofiltration: fundamentals, design and operations principles, and applications. J. Environ. Eng. 123:538-546. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(538)
  41. Thompson, D., L. Sterne, J. Bell, W. Parker, and A. Lye. 1996. Pilot scale investigation of sustainable BTEX removal with a compost biofilter. In: Proceedings of the 89th Annual Meeting & Exhibition of the Air & Waste Management Association. June 23-26, 1996. Nashville. Air & Waste Manag. Assoc. Pittsburgh, PA, USA.
  42. Weber, F., I. Kowarik, and I. Saumel. 2014. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environ. Pollut. 186:234-240. https://doi.org/10.1016/j.envpol.2013.12.011
  43. Veiga, M.C., M. Fraga, L. Amor, and C. Kennes. 1999. Biofilter performance and characterization of a biocatalyst degrading alkyl benzene gases. Biodegradation 10:169-176. https://doi.org/10.1023/A:1008301415192
  44. Yang, D.S., S.V. Pennisi, K.C. Son, and S.J. Kays. 2009. Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44:1377-1381.

Cited by

  1. The phytoremediation of indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters vol.17, pp.2, 2018, https://doi.org/10.1007/s11157-018-9465-2
  2. Analysis of a Survey on Public Perceptions and Preferences of the “Smart Green Office” to Help Encourage Creation of the Program vol.27, pp.1, 2015, https://doi.org/10.11623/frj.2019.27.1.09
  3. Active botanical biofiltration of air pollutants using Australian native plants vol.12, pp.12, 2015, https://doi.org/10.1007/s11869-019-00758-w
  4. 미세먼지와 식물의 상호작용: 국내외 연구동향 및 생태적 영향 고찰 vol.53, pp.4, 2015, https://doi.org/10.11614/ksl.2020.53.4.436