DOI QR코드

DOI QR Code

A Genome-wide Scan for Selective Sweeps in Racing Horses

  • Moon, Sunjin (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Jin Woo (Horse Registry, Korea Racing Authority (KRA)) ;
  • Shin, Donghyun (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Shin, Kwang-Yun (Institute for Livestock Promotion) ;
  • Kim, Jun (Institute for Livestock Promotion) ;
  • Choi, Ik-Young (Genome analysis center, National Instrumentation and Environmental Management (NICEM), Seoul National University) ;
  • Kim, Jaemin (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Kim, Heebal (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.09.08
  • Accepted : 2015.02.22
  • Published : 2015.11.01

Abstract

Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2) that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1), pallid (PLDN), and Ras and Rab interactor 2 (RIN2) genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses.

Keywords

References

  1. Anisimova, M. and C. Kosiol. 2009. Investigating protein-coding sequence evolution with probabilistic codon substitution models. Mol. Biol. Evol. 26:255-271. https://doi.org/10.1093/molbev/msn232
  2. Binns, M., D. A. Boehler, and D. H. Lambert. 2010. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Anim. Genet. 41:154-158. https://doi.org/10.1111/j.1365-2052.2010.02126.x
  3. Browning, S. R. and B. L. Browning. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81:1084-1097. https://doi.org/10.1086/521987
  4. Cunningham, E. P., J. J. Dooley, R. K. Splan, and D. G. Bradley. 2001. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 32:360-364. https://doi.org/10.1046/j.1365-2052.2001.00785.x
  5. Duggal, P., E. M. Gillanders, T. N. Holmes, and J. E. Bailey-Wilson. 2008. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics 9:516. https://doi.org/10.1186/1471-2164-9-516
  6. Excoffier, L., T. Hofer, and M. Foll. 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103:285-298. https://doi.org/10.1038/hdy.2009.74
  7. Excoffier, L. and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  8. Gilmour, A. R., B. J. Gogel, B. R. Cullis, R. Thompson, D. Butler, M. Cherry, D. Collins, G. Dutkowski, S. A. Harding, and K. Haskard. 2009. ASReml User Guide Release 3.0. VSN International Ltd., UK. http://www.vsni.co.uk275.
  9. Grobet, L., D. Pirottin, F. Farnir, D. Poncelet, L. J. Royo, B. Brouwers, E. Christians, D. Desmecht, F. Coignoul, R. Kahn, and M. Georges. 2003. Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35:227-238. https://doi.org/10.1002/gene.10188
  10. Gu, J., N. Orr, S. D. Park, L. M. Katz, G. Sulimova, D. E. MacHugh, and E. W. Hill. 2009. A genome scan for positive selection in thoroughbred horses. PLoS One 4(6):e5767-e5767. https://doi.org/10.1371/journal.pone.0005767
  11. Hill, E. W., D. G. Bradley, M. Al Barody, O. Ertugrul, R. Splan, I. Zakharov, and E. P. Cunningham. 2002. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Anim. Genet. 33:287-294. https://doi.org/10.1046/j.1365-2052.2002.00870.x
  12. Hill, E. W., J. Gu, S. S. Eivers, R. G. Fonseca, B. A. McGivney, P. Govindarajan, N. Orr, L. M. Katz, and D. MacHugh. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLoS One 5(1):e8645. https://doi.org/10.1371/journal.pone.0008645
  13. Innan, H. and Y. Kim. 2008. Detecting local adaptation using the joint sampling of polymorphism data in the parental and derived populations. Genetics 179:1713-1720. https://doi.org/10.1534/genetics.108.086835
  14. Jacob, J., R. Storm, D. S. Castro, C. Milton, P. Pla, F. Guillemot, C. Birchmeier, and J. Briscoe. 2009. Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development 136:2477-2485. https://doi.org/10.1242/dev.034546
  15. Jansen, T., P. Forster, M. A. Levine, H. Oelke, M. Hurles, C. Renfrew, J. Weber, and K. Olek. 2002. Mitochondrial DNA and the origins of the domestic horse. Proc. Natl. Acad. Sci. USA 99:10905-10910. https://doi.org/10.1073/pnas.152330099
  16. Kalashnikova, E., R. A. Lorca, I. Kaur, G. A. Barisone, B. Li, T. Ishimaru, J. S. Trimmer, D. P. Mohapatra, and E. Diaz. 2010. SynDIG1: An activity-regulated, AMPA-receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65:80-93. https://doi.org/10.1016/j.neuron.2009.12.021
  17. Kambadur, R., M. Sharma, T. P. L. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-915. https://doi.org/10.1101/gr.7.9.910
  18. Kim, K. I., Y. H. Yang, S. S. Lee, C. Park, R. Ma, J. L. Bouzat, and H. A. Lewin. 1999. Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism. Anim. Genet. 30:102-108. https://doi.org/10.1046/j.1365-2052.1999.00419.x
  19. Lee, S. J. 2007. Sprinting without myostatin: A genetic determinant of athletic prowess. Trends Genet. 23:475-477. https://doi.org/10.1016/j.tig.2007.08.008
  20. Li, H. and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  21. Lindgren, G., N. Backstrom, J. Swinburne, L. Hellborg, A. Einarsson, K. Sandberg, G. Cothran, C. Vila, M. Binns, and H. Ellegren. 2004 Limited number of patrilines in horse domestication. Nat. Genet. 36:335-336. https://doi.org/10.1038/ng1326
  22. McGivney, B. A., J. A. Browne, R. G. Fonseca, L. M. Katz, D. E. MacHugh, R. Whiston, and E. W. Hill. 2012. MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Anim. Genet. 43:810-812. https://doi.org/10.1111/j.1365-2052.2012.02329.x
  23. McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297-1303. https://doi.org/10.1101/gr.107524.110
  24. McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94:12457-12461. https://doi.org/10.1073/pnas.94.23.12457
  25. Nam, D. Y. 1969. Horse production in Cheju during Lee dynasty. Studies on Korean History 4:131-131.
  26. Nei, M. 1987. Molecular evolutionary genetics. Columbia Univ. Press, New York, NY, USA.
  27. Nei, M. and W. H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76:5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  28. Orlando, L., A. Ginolhac, G. Zhang, D. Froese, A. Albrechtsen, M. Stiller, M. Schubert, E. Cappellini, B. Petersen, and I. Moltke et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74-78. https://doi.org/10.1038/nature12323
  29. Park, K. D., H. Kim, J. Y. Hwang, C. K. Lee, K. T. Do, H. S. Kim, Y. M. Yang, Y. J. Kwon, J. Kim, H. J. Kim, K. D. Song, J. D. Oh, H. Kim, B. W. Cho, S. Cho, and H. K. Lee. 2014. Copy number deletion has little impact on gene expression levels in racehorses. Asian Australas. J. Anim. Sci. 27:1345-1354. https://doi.org/10.5713/ajas.2013.13857
  30. Petersen, J. L., J. R. Mickelson, E. G. Cothran, L. S. Andersson, J. Axelsson, E. Bailey, D. Bannasch, M. M. Binns, A. S. Borges, and P. Brama et al. 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS One 8(1):e54997. https://doi.org/10.1371/journal.pone.0054997
  31. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. W. de Bakker, M. J. Daly, and P. C. Sham. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575. https://doi.org/10.1086/519795
  32. Qanbari, S., H. Pausch, S. Jansen, M. Somel, T. M. Strom, R. Fries, R. Nielsen, and H. Simianer. 2014. Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genet. 10(2):e1004148. https://doi.org/10.1371/journal.pgen.1004148
  33. Riquetl, I., A. Schoeberleinl, S. Dunnerz, F. Menissier, and I. Massabanda. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17:71-71. https://doi.org/10.1038/ng0997-71
  34. Suzuki, J., Y. Yamazaki, L. Guang, Y. Kaziro, and H. Koide. 2000. Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol. Cell. Biol. 20:4658-4665. https://doi.org/10.1128/MCB.20.13.4658-4665.2000
  35. Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak, R. Daverman, K. Diemer, A. Muruganujan, and A. Narechania. 2003. PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 13:2129-2141. https://doi.org/10.1101/gr.772403
  36. Tozaki, T., T. Miyake, H. Kakoi, H. Gawahara, S. Sugita, T. Hasegawa, N. Ishida, K. Hirota, and Y. Nakano. 2010. A genome.wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim. Genet. 41:28-35. https://doi.org/10.1111/j.1365-2052.2010.02095.x
  37. Vaysse, A., A. Ratnakumar, T. Derrien, E. Axelsson, G. Rosengren Pielberg, S. Sigurdsson, T. Fall, E. H. Seppala, M. S. Hansen, and C. T. Lawley et al. 2011. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 7(10):e1002316. https://doi.org/10.1371/journal.pgen.1002316
  38. Williamson, S. A. and R. G. Beilharz. 1998. The inheritance of speed, stamina and other racing performance characters in the Australian Thoroughbred. J. Anim. Breed. Genet. 115:1-16. https://doi.org/10.1111/j.1439-0388.1998.tb00323.x
  39. Willing, E. M., C. Dreyer, and C. van Oosterhout. 2012. Estimates of genetic differentiation measured by $F_ST$ do not necessarily require large sample sizes when using many SNP markers. PLoS One 7(8):e42649. https://doi.org/10.1371/journal.pone.0042649

Cited by

  1. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep vol.48, pp.1, 2016, https://doi.org/10.1111/age.12477
  2. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism vol.19, pp.1, 2018, https://doi.org/10.1186/s12863-018-0670-3
  3. Genome-Wide Signatures of Selection Reveal Genes Associated With Performance in American Quarter Horse Subpopulations vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00249
  4. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses vol.360, pp.6384, 2018, https://doi.org/10.1126/science.aao3297
  5. A genome-wide scan for diversifying selection signatures in selected horse breeds vol.14, pp.1, 2019, https://doi.org/10.1371/journal.pone.0210751
  6. Evaluation of recent changes in genetic variability in Japanese thoroughbred population based on a short tandem repeat parentage panel vol.90, pp.2, 2015, https://doi.org/10.1111/asj.13143
  7. Comparative population genomics unveils candidate genes for athletic performance in Hanoverians vol.62, pp.4, 2015, https://doi.org/10.1139/gen-2018-0151
  8. Selection signatures in four German warmblood horse breeds: Tracing breeding history in the modern sport horse vol.14, pp.4, 2015, https://doi.org/10.1371/journal.pone.0215913
  9. No polymorphisms in the coding region of the prion-like protein gene in Thoroughbred racehorses vol.67, pp.2, 2019, https://doi.org/10.1556/004.2019.019
  10. Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-53102-8
  11. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post‐genome era vol.50, pp.6, 2015, https://doi.org/10.1111/age.12857
  12. The use of the SLC16A1 gene as a potential marker to predict race performance in Arabian horses vol.20, pp.1, 2015, https://doi.org/10.1186/s12863-019-0774-4
  13. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance vol.20, pp.1, 2015, https://doi.org/10.1186/s12864-019-6079-1
  14. Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines vol.10, pp.12, 2019, https://doi.org/10.3390/genes10120976
  15. DGGR-lipase for effective diagnosis of pancreatitis in horses vol.28, pp.6, 2015, https://doi.org/10.1007/s00580-019-02982-3
  16. Whole-Genome Signatures of Selection in Sport Horses Revealed Selection Footprints Related to Musculoskeletal System Development Processes vol.10, pp.1, 2015, https://doi.org/10.3390/ani10010053
  17. Whole‐genome sequence analysis reveals candidate genomic footprints and genes associated with reproductive traits in Thoroughbred horse vol.55, pp.2, 2015, https://doi.org/10.1111/rda.13608
  18. Signatures of selection analysis using whole-genome sequence data reveals novel candidate genes for pony and light horse types vol.63, pp.8, 2015, https://doi.org/10.1139/gen-2020-0001