DOI QR코드

DOI QR Code

Optimization of Economic Load Dispatch Problem for Quadratic Fuel Cost Function with Prohibited Operating Zones

운전금지영역을 가진 이차 발전비용함수의 경제급전문제 최적화

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 과학기술대학 멀티미디어공학과)
  • Received : 2015.03.24
  • Accepted : 2015.10.09
  • Published : 2015.10.31

Abstract

This paper proposes a deterministic optimization algorithm to solve economic load dispatch problem with quadratic convex fuel cost function. The proposed algorithm primarily partitions a generator with prohibited zones into multiple generators so as to place them afield the prohibited zone. It then sets initial values to $P_i{\leftarrow}P_i^{max}$ and reduces power generation costs of those incurring the maximum unit power cost. It finally employs a swap optimization process of $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$ where $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_j+{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}=1.0,0.1,0.01,0.001$. When applied to 3 different 15-generator cases, the proposed algorithm has consistently yielded optimized results compared to those of heuristic algorithms.

본 논문은 운전금지영역을 가진 이차 볼록 발전비용 함수를 적용하는 경제급전의 최적화 문제에 대한 결정론적 최적화 알고리즘을 제안하였다. 제안된 알고리즘은 운전금지구역을 가진 발전기는 운전금지구역을 벗어나도록 분할하고, 초기치 $P_i{\leftarrow}P_i^{max}$에 대해 발전단가가 큰 순서대로 발전량을 감소시키고, $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_j+{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}=1.0,0.1,0.01,0.001$에 대해 $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$의 교환 최적화 과정을 수행하였다. 제안된 방법을 15-발전기의 3가지 사례에 적용한 결과 간단하면서도 항상 동일한 결과로 휴리스틱 알고리즘들에 비해 최적의 결과를 나타내었다.

Keywords

References

  1. R. Goncalves, C. Almeida, J. Kuk, and M. Delgado, "Solving Economic Load Dispatch Problem by Natural Computing Intelligent Systems," 15th International Conference on Intelligent System Applications to Power Systems (ISAP), pp. 1-6, 8-12, Nov. 2009, doi:10.1109 /ISAP.2009.5352843.
  2. S. Coelho and V. C. Mariani, "Combining of Chaotic Differential Evolution and Quadratic Programming for Economic Dispatch Optimization with Valve-Point Effect," IEEE Trans. on Power Systems, Vol. 21, No. 2, 2006, doi:10.1109/TPWRS.2006.873410.
  3. A. Pereira-Neto, C. Unsihuay and O. R. Saavedra, "Efficient Evolutionary Strategy Optimisation Procedure to Solve the Non-convex Economic Dispatch Problem with Generator Constraints," IEEE Proceeding on General Transmission and Distribution, Vol. 152, No. 5, pp. 653-660, 2005, doi:10.1049/ip-gtd:20045287.
  4. Z. L. Gaing, "Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints," IEEE Trans. on Power System, Vol. 18, No. 3, pp. 1187-1195, 2003, doi:10.1109/TPWRS.2003.814889.
  5. C. T. Su and C. T. Lin, "New Approach with a Hopfield Modeling Framework to Economic Dispatch," IEEE Trans. on Power System, Vol. 15, No. 2, pp. 541-545, May 2000, doi:10.1109/59.867138.
  6. B. Shaw, S. Ghoshal, V. Mukherjee, and S. P. Ghoshal, "Solution of Economic Load Dispatch Problems by a Novel Seeker Optimization Algorithm," International Journal of Electrical Engineering and Informatics, Vol. 3, No. 1, pp. 26-41, Mar. 2011. https://doi.org/10.15676/ijeei.2011.3.1.3
  7. T. Adhinarayanan and M. Sydulu, "Efficient Lamda Logic Based Optimisation Procedure to Solve the Large Scale Generator Constrained Economic Dispatch Problem," Journal of Electrical Engineering & Technology, Vol. 4, No. 3, pp. 301-309, 2009, doi:10.5370/JEET.2009.4.3.301.
  8. M. Sydulu, "A Very Fast and Effective Non-iterative "$\lambda$-Logic Based" Algorithm for Economic Dispatch of Thermal Units," Proc. IEEE Conference on TENCON, pp. 1434-1437, 1999, doi:10.1016/j.ijepes.2009.11.002.
  9. L. S. Coelho and V. C. Mariani, "An Improved Harmony Search Algorithm for Power Economic Load Dispatch," Energy Conversion and Management, Vol. 50, No. 10, pp. 2522-2526, Oct. 2009, doi:10.1016/j.enconman.2009.05.034.
  10. J. B. Park, Y. W. Jeong, J. R. Shin, and K. Y. Lee, "An improved particle Swam Optimization for Nonconvex Economic Dispatch Problems," IEEE Trans. on Power Systems, Vol. 25, No. 1, pp. 156-166, Feb. 2010, doi:10.1109/TPWRS.2009.2030293.
  11. S. O. Orero and M. R. Irving, "Economic Dispatch of Generators with Prohibited Operating Zones: A Genetic Algorithm Approach," Proceeddings of IEE Generation, Transmission and Distribution, Vol. 143, No. 6, pp. 529-534, Nov. 1996, doi:10.1049/ip-gtd:19960626 .
  12. Z. L. Gaing, "Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints," IEEE Transaction Power Systems, Vol. 18, No. 3, pp. 1187-1195, Aug, 2003, doi:10.1109/TPWRS.2003.814889.
  13. L. D. S. Coelho and C. S. Lee, "Solving Economic Load Dispatch Problems in Power Systems using Chaotic and Gaussian Particle Swarm Optimization Approaches," International Journal of Electrical Power & Energy Systems, Vol. 30, Issue. 5, pp. 297-307, June, 2008, doi:10.1016/j.ijepes.2007.08.001.
  14. M. S. Kumari and M. Sydulu, "A Fast Computational Genetic Algorithm for Economic Load Dispatch," International Journal of Recent Trends in Engineering, Vol. 1, No. 1, pp. 349-356, May, 2009.
  15. A. Bhattacharya and P.K. Chattopadhyay, "Biogeography-based Optimization for Different Economic Load Dispatch Problems," IEEE Trans. on Power Systems, Vol. 25, pp. 1064-1077, 2010, doi: 10.1109/TPWRS.2009.2034525.
  16. A. Bhattacharya, and P.K. Chattopadhyay, "Hybrid Differential Evolution with Biogeography- based Optimization for Solution of Economic Load Dispatch," IEEE Transactions on Power Systems, Vol. 25, No. 4, pp. 1955-1964, Nov. 2010, doi:10.1109/TPWRS.2010.2043270.
  17. K. T. Chaturvedi, M. Pandit, and L Srivastava, "Particle Swarm Optimization with Time Varying Acceleration Coefficients for Non-convex Economic Power Dispatch," International Journal of Electrical Power and Energy System, Vol. 31, No. 6, pp. 249-257, Jul. 2009, doi:10.1016/j.ijepes.2009.01.010.