Acknowledgement
Supported by : 한국연구재단
References
- Das, S., Mukhopadhyay, A., Roy, A., Abraham, A. & Panigrahi, B. (2011). Exploratory Power of the Harmony Search Algorithm: Analysis and Improvements for Global Numerical Optimization. IEEE Trans. on systems, man and cybernetics - Part B: Cybernetics, 41(1), 89-106. https://doi.org/10.1109/TSMCB.2010.2046035
- Deutsch, D. (1989). Quantum computational networks, in Proc. of the Royal Society of London A, 425, 73-90. https://doi.org/10.1098/rspa.1989.0099
- Feynman, R. (1986). Quantum Mechanical computers. Foundations of Physics, 16, 507-531. https://doi.org/10.1007/BF01886518
- Geem, Z.W., Kim, J.H. & Loganathan, G.V. (2001). A new heuristic optimization algorithm: harmony search. Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201
- Ghosh, A. & Mukherjee, S. (2013). Quantum Annealing and Computation: A Brief Documentary Note. SCIENCE AND CULTURE (Indian Science News Association), 2013, 79, 485-500.
- Grover, L. (1996). A fast quantum mechanical algorithm for database search. in Proc. of the 28th ACM Symposium on Theory of Computing, 212-219.
- Grover, L. (1999). Quantum Mechanical Searching, in Proc. of the 1999 Congress on Evolutionary Computation, Piscataway, NJ: IEEE Press, 3, 2255-2261.
- Han, K. (2003). Quantum-inspired Evolutionary Algorithm, Ph.D. dissertation, Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
- Han, K. & Kim, J. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transaction on Evolutionary Computation, 6(6), 580-593. https://doi.org/10.1109/TEVC.2002.804320
-
Han, K. & Kim, J. (2004). Quantum-inspired evolutionary algorithms with new termination criterion, H
${\varepsilon}$ gate, and two-phase scheme. IEEE Transaction on Evolutionary Computation, 8(2), 156-169. https://doi.org/10.1109/TEVC.2004.823467 - Layeb, A. (2013). A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems. Journal of Computational and Applied Mathematics, 253, 14-25. https://doi.org/10.1016/j.cam.2013.04.004
- Lee, K. & Geem, Z.W. (2004). A new structural optimization method based on the harmony search algorithm. Computers and Structures, 82, 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
- Mahdavi, M., Fesanghary, M. & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188, 1567-1579. https://doi.org/10.1016/j.amc.2006.11.033
- Moore, M. & Narayanan, A. (1995). Quantum-inspired Computing, Technical report, Department of Computer Science, University of Exeter, UK.
- Omran, M. & Mahdavi, M. (2008). Global-best harmony search. Applied Mathematics and Computation, 198, 643-656. https://doi.org/10.1016/j.amc.2007.09.004
- Pan Q., Suganthan, P., Liang, J. & Fatih Tasgetiren, M. (2010a). A local-best harmony search algorithm with dynamic subpopulations. Engineering Optimization, 42(2), 101-117. https://doi.org/10.1080/03052150903104366
- Pan, Q., Suganthan, P., Fatih Tasgetiren, M. & Liang, J. (2010b). A self-adaptive global best harmony search algorithm for continuous optimization problems. Applied Mathematics and Computation, 216, 830-848. https://doi.org/10.1016/j.amc.2010.01.088
- Schmit, Jr, L. & Miura, H. (1976). Approximation concepts for efficient structural synthesis. NASA CR-2552, Washington, DC: NASA.
- Shon, S., Jo, H. & Lee S. (2015). An Arrangement Technique for Fine Regular Triangle Grid of Network Dome by using Harmony Search Algorithm. Journal of Korean Association for Spatial Structures, 15(2), 87-94. (Korean) https://doi.org/10.9712/KASS.2015.15.2.087
- Shon, S. & Lee S. (2014). Structural Optimization of Planar Truss using Quantum-inspired Evolution Algorithm. Journal of Korea Institute of Safety Inspection, 18(4), 1-9. (Korean)
- Shor, P. (1994). Algorithms for Quantum Computation: Discrete Logarithms and Factoring, in Proc. of the 35th Annual Symposium on Foundations of Computer Science, Piscataway, NJ: IEEE Press, 1994, 124-134.
- Su, H. & Yang, Y. (2011). Free Search with Adaptive Differential Evolution Exploitation and Quantum-Inspired Exploration Differential evolution and quantum-inquired differential evolution for evolving Takagi-Sugeno fuzzy models. Expert Systems with Applications, 38, 6447-6451. https://doi.org/10.1016/j.eswa.2010.11.107
- Wang, C. & Huang, Y. (2010). Self-adaptive harmony search algorithm for optimization. Expert Systems with Applications, 37, 2826-2837. https://doi.org/10.1016/j.eswa.2009.09.008
- Yadav, P., Kumar, R., Panda, S. & Chang, C. (2012). An intelligent tuned Harmony Search algorithm for optimization. Information Sciences, 196, 47-72. https://doi.org/10.1016/j.ins.2011.12.035
- Yin, J., Wang, Y. & Hu, J. (2012). Free Search with Adaptive Differential Evolution Exploitation and Quantum-Inspired Exploration. Journal of Network and Computer Applications, 35, 1035-1051. https://doi.org/10.1016/j.jnca.2011.12.004
- Zhang, G. (2011). Quantum-inspired evolutionary algorithms: a survay and empirical study, J. Heuristics, 17, 303-351. https://doi.org/10.1007/s10732-010-9136-0