DOI QR코드

DOI QR Code

Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics

  • Kim, Eunhee G. (Department of Systems Immunology, College of Biomedical Science, Kangwon National University) ;
  • Kim, Kristine M. (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
  • Received : 2015.07.29
  • Accepted : 2015.09.23
  • Published : 2015.11.01

Abstract

Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris$^{(R)}$(anti-CD30-drug conjugate) and Kadcyla$^{(R)}$(anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed.

Keywords

References

  1. Advani, A., Coiffier, B., Czuczman, M. S., Dreyling, M., Foran, J., Gine, E., Gisselbrecht, C., Ketterer, N., Nasta, S., Rohatiner, A., Schmidt-Wolf, I. G., Schuler, M., Sierra, J., Smith, M. R., Verhoef, G., Winter, J. N., Boni, J., Vandendries, E., Shapiro, M. and Fayad, L. (2010) Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J. Clin. Oncol. 28, 2085-2093. https://doi.org/10.1200/JCO.2009.25.1900
  2. Albin, N., Massaad, L., Toussaint, C., Mathieu, M. C., Morizet, J., Parise, O., Gouyette, A. and Chabot, G. G. (1993) Main drugmetabolizing enzyme systems in human breast tumors and peritumoral tissues. Cancer Res. 53, 3541-3546.
  3. Alley, S. C., Benjamin, D. R., Jeffrey, S. C., Okeley, N. M., Meyer, D. L., Sanderson, R. J. and Senter, P. D. (2008) Contribution of Linker Stability to the Activities of Anticancer Immunoconjugates. Bioconjug. Chem. 19, 759-765. https://doi.org/10.1021/bc7004329
  4. Ansell, S. M., Horwitz, S. M., Engert, A., Khan, K. D., Lin, T., Strair, R., Keler, T., Graziano, R., Blanset, D., Yellin, M., Fischkoff, S., Assad, A. and Borchmann, P. (2007) Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin's lymphoma and anaplastic large-cell lymphoma. J. Clin. Oncol. 25, 2764-2769. https://doi.org/10.1200/JCO.2006.07.8972
  5. Axup, J. Y., Bajjuri, K. M., Ritland, M., Hutchins, B. M., Kim, C. H., Kazane, S. A., Halder, R., Forsyth, J. S., Santidrian, A. F., Stafin, K., Lu, Y., Tran, H., Seller, A. J., Biroc, S. L., Szydlik, A., Pinkstaff, J. K., Tian, F., Sinha, S. C., Felding-Habermann, B., Smider, V. V. and Schultz, P. G. (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad Sci. U.S. A. 109, 16101-16106. https://doi.org/10.1073/pnas.1211023109
  6. Bai, R. L., Pettit, G. R. and Hamel, E. (1990) Structure-activity studies with chiral isomers and with segments of the antimitotic marine peptide dolastatin 10. Biochem. Pharmacol. 40, 1859-1864. https://doi.org/10.1016/0006-2952(90)90367-T
  7. Beck, A., Senter, P. and Chari, R. (2011) World Antibody Drug Conjugate Summit Europe: February 21-23, 2011; Frankfurt, Germany. MAbs 3, 331-337. https://doi.org/10.4161/mabs.3.4.16612
  8. Boeggeman, E., Ramakrishnan, B., Kilgore, C., Khidekel, N., Hsieh-Wilson, L. C., Simpson, J. T. and Qasba, P. K. (2007) Direct identification of nonreducing GlcNAc residues on N-glycans of glycoproteins using a novel chemoenzymatic method. Bioconjug. Chem. 18, 806-814. https://doi.org/10.1021/bc060341n
  9. Boeggeman, E., Ramakrishnan, B., Pasek, M., Manzoni, M., Puri, A., Loomis, K. H., Waybright, T. J. and Qasba, P. K. (2009) Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug. Chem. 20, 1228-1236. https://doi.org/10.1021/bc900103p
  10. Boger, D. L. (1993) Design, synthesis, and evaluation of DNA minor groove binding agents. Pure Appl. Chem. 65, 1123-1132.
  11. Boger, D. L. and Johnson, D. S. (1995) CC-1065 and the duocarmycins: unraveling the keys to a new class of naturally derived DNA alkylating agents. Proc. Natl. Acad Sci. U.S.A. 92, 3642-3649. https://doi.org/10.1073/pnas.92.9.3642
  12. Bross, P. F., Beitz, J., Chen, G., Chen, X. H., Duffy, E., Kieffer, L., Roy, S., Sridhara, R., Rahman, A., Williams, G. and Pazdur, R. (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer. Res. 7, 1490-1496.
  13. Carrico, I. S., Carlson, B. L. and Bertozzi, C. R. (2007) Introducing genetically encoded aldehydes into proteins. Nat. Chem. Biol. 3, 321-322. https://doi.org/10.1038/nchembio878
  14. Cassady, J. M., Chan, K. K., Floss, H. G. and Leistner, E. (2004) Recent developments in the maytansinoid antitumor agents. Chem. Pharm. Bull. (Tokyo) 52, 1-26. https://doi.org/10.1248/cpb.52.1
  15. Chen, Y., Liu, G., Guo, L., Wang, H., Fu, Y. and Luo, Y. (2015) Enhancement of tumor uptake and therapeutic efficacy of EGFR-targeted antibody cetuximab and antibody-drug conjugates by cholesterol sequestration. Int. J. Cancer 136, 182-194. https://doi.org/10.1002/ijc.28950
  16. Corrie, P. G. (2008) Cytotoxic chemotherapy: clinical aspects. Medicine 36, 24-28. https://doi.org/10.1016/j.mpmed.2007.10.012
  17. De Groot, F. M., Beusker, P. H., Scheeren, J. W., De Vos, D., Van Berkom, L. W. A., Busscher, G. F., Seelen, A. E., RKoekkoek, R. and Albrecht, C. (2007). ELONGATED AND MULTIPLE SPACERS IN ACTIVATIBLE PRODRUGS. Patent U.S. 7223837 B2.
  18. Deutsch, Y. E., Tadmor, T., Podack, E. R. and Rosenblatt, J. D. (2011) CD30: an important new target in hematologic malignancies. Leuk Lymphoma 52, 1641-1654. https://doi.org/10.3109/10428194.2011.574761
  19. Dijoseph, J. F., Dougher, M. M., Armellino, D. C., Evans, D. Y. and Damle, N. K. (2007) Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 21, 2240-2245. https://doi.org/10.1038/sj.leu.2404866
  20. Dornan, D., Bennett, F., Chen, Y., Dennis, M., Eaton, D., Elkins, K., French, D., Go, M. A., Jack, A., Junutula, J. R., Koeppen, H., Lau, J., McBride, J., Rawstron, A., Shi, X., Yu, N., Yu, S. F., Yue, P., Zheng, B., Ebens, A. and Polson, A. G. (2009) Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood 114, 2721-2729. https://doi.org/10.1182/blood-2009-02-205500
  21. Doronina, S. O., Mendelsohn, B. A., Bovee, T. D., Cerveny, C. G., Alley, S. C., Meyer, D. L., Oflazoglu, E., Toki, B. E., Sanderson, R. J., Zabinski, R. F., Wahl, A. F. and Senter, P. D. (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 17, 114-124. https://doi.org/10.1021/bc0502917
  22. Doronina, S. O., Toki, B. E., Torgov, M. Y., Mendelsohn, B. A., Cerveny, C. G., Chace, D. F., DeBlanc, R. L., Gearing, R. P., Bovee, T. D., Siegall, C. B., Francisco, J. A., Wahl, A. F., Meyer, D. L. and Senter, P. D. (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778-784. https://doi.org/10.1038/nbt832
  23. Eisenbeis, C. F., Caligiuri, M. A. and Byrd, J. C. (2003) Rituximab: converging mechanisms of action in non-Hodgkin's lymphoma? Clin. Cancer Res. 9, 5810-5812.
  24. Elias, D. J., Kline, L. E., Robbins, B. A., Johnson, H. C., Jr., Pekny, K., Benz, M., Robb, J. A., Walker, L. E., Kosty, M. and Dillman, R. O. (1994) Monoclonal antibody KS1/4-methotrexate immunoconjugate studies in non-small cell lung carcinoma. Am. J. Respir. Crit. Care Med. 150, 1114-1122. https://doi.org/10.1164/ajrccm.150.4.7921445
  25. Ellestad, G. A. (2011) Structural and conformational features relevant to the anti-tumor activity of calicheamicin gamma 1I. Chirality 23, 660-671. https://doi.org/10.1002/chir.20990
  26. Erickson, H. K., Park, P. U., Widdison, W. C., Kovtun, Y. V., Garrett, L. M., Hoffman, K., Lutz, R. J., Goldmacher, V. S. and Blattler, W. A. (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 66, 4426-4433. https://doi.org/10.1158/0008-5472.CAN-05-4489
  27. Forero-Torres, A., Leonard, J. P., Younes, A., Rosenblatt, J. D., Brice, P., Bartlett, N. L., Bosly, A., Pinter-Brown, L., Kennedy, D., Sievers, E. L. and Gopal, A. K. (2009) A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br. J. Haematol. 146, 171-179. https://doi.org/10.1111/j.1365-2141.2009.07740.x
  28. Gajria, D. and Chandarlapaty, S. (2011) HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther. 11, 263-275. https://doi.org/10.1586/era.10.226
  29. Gerber, H. P. (2010) Emerging immunotherapies targeting CD30 in Hodgkin's lymphoma. Biochem. Pharmacol. 79, 1544-1552. https://doi.org/10.1016/j.bcp.2010.01.015
  30. Giles, F. J., Kantarjian, H. M., Kornblau, S. M., Thomas, D. A., Garcia-Manero, G., Waddelow, T. A., David, C. L., Phan, A. T., Colburn, D. E., Rashid, A. and Estey, E. H. (2001) Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 92, 406-413. https://doi.org/10.1002/1097-0142(20010715)92:2<406::AID-CNCR1336>3.0.CO;2-U
  31. Hallen, H. E., Luo, H., Scott-Craig, J. S. and Walton, J. D. (2007) Gene family encoding the major toxins of lethal Amanita mushrooms. Proc. Natl. Acad Sci. U.S.A. 104, 19097-19101. https://doi.org/10.1073/pnas.0707340104
  32. Hamann, P. R., Hinman, L. M., Beyer, C. F., Lindh, D., Upeslacis, J., Flowers, D. A. and Bernstein, I. (2002) An anti-CD33 antibodycalicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug. Chem. 13, 40-46. https://doi.org/10.1021/bc0100206
  33. Hamblett, K. J., Senter, P. D., Chace, D. F., Sun, M. M., Lenox, J., Cerveny, C. G., Kissler, K. M., Bernhardt, S. X., Kopcha, A. K., Zabinski, R. F., Meyer, D. L. and Francisco, J. A. (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063-7070. https://doi.org/10.1158/1078-0432.CCR-04-0789
  34. Hofer, T., Skeffington, L. R., Chapman, C. M. and Rader, C. (2009) Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry 48, 12047-12057. https://doi.org/10.1021/bi901744t
  35. Hommelgaard, A. M., Lerdrup, M. and van Deurs, B. (2004) Association with membrane protrusions makes ErbB2 an internalizationresistant receptor. Mol. Biol. Cell 15, 1557-1567. https://doi.org/10.1091/mbc.E03-08-0596
  36. Horn-Lohrens, O., Tiemann, M., Lange, H., Kobarg, J., Hafner, M., Hansen, H., Sterry, W., Parwaresch, R. M. and Lemke, H. (1995) Shedding of the soluble form of CD30 from the Hodgkin-analogous cell line L540 is strongly inhibited by a new CD30-specific antibody (Ki-4). Int. J. Cancer 60, 539-544. https://doi.org/10.1002/ijc.2910600419
  37. Ingle, G. S., Chan, P., Elliott, J. M., Chang, W. S., Koeppen, H., Stephan, J. P. and Scales, S. J. (2008) High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br. J. Haematol. 140, 46-58.
  38. Jain, N., O'Brien, S., Thomas, D. and Kantarjian, H. (2014) Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia. Front Biosci (Elite Ed) 6, 40-45.
  39. Jeffrey, S. C., Andreyka, J. B., Bernhardt, S. X., Kissler, K. M., Kline, T., Lenox, J. S., Moser, R. F., Nguyen, M. T., Okeley, N. M., Stone, I. J., Zhang, X. and Senter, P. D. (2006) Development and properties of beta-glucuronide linkers for monoclonal antibody-drug conjugates. Bioconjug. Chem. 17, 831-840. https://doi.org/10.1021/bc0600214
  40. Jeffrey, S. C., Nguyen, M. T., Moser, R. F., Meyer, D. L., Miyamoto, J. B. and Senter, P. D. (2007) Minor groove binder antibody conjugates employing a water soluble ${\beta}$-glucuronide linker. Bioorg. Med. Chem. Lett. 17, 2278-2280. https://doi.org/10.1016/j.bmcl.2007.01.071
  41. Jeffrey, S. C., Torgov, M. Y., Andreyka, J. B., Boddington, L., Cerveny, C. G., Denny, W. A., Gordon, K. A., Gustin, D., Haugen, J., Kline, T., Nguyen, M. T. and Senter, P. D. (2005) Design, synthesis, and in vitro evaluation of dipeptide-based antibody minor groove binder conjugates. J. Med. Chem. 48, 1344-1358. https://doi.org/10.1021/jm040137q
  42. Jeger, S., Zimmermann, K., Blanc, A., Grunberg, J., Honer, M., Hunziker, P., Struthers, H. and Schibli, R. (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. Engl. 49, 9995-9997. https://doi.org/10.1002/anie.201004243
  43. Junutula, J. R., Bhakta, S., Raab, H., Ervin, K. E., Eigenbrot, C., Vandlen, R., Scheller, R. H. and Lowman, H. B. (2008a) Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J. Immunol. Methods 332, 41-52. https://doi.org/10.1016/j.jim.2007.12.011
  44. Junutula, J. R., Flagella, K. M., Graham, R. A., Parsons, K. L., Ha, E., Raab, H., Bhakta, S., Nguyen, T., Dugger, D. L., Li, G., Mai, E., Lewis Phillips, G. D., Hiraragi, H., Fuji, R. N., Tibbitts, J., Vandlen, R., Spencer, S. D., Scheller, R. H., Polakis, P. and Sliwkowski, M. X. (2010) Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin. Cancer Res. 16, 4769-4778. https://doi.org/10.1158/1078-0432.CCR-10-0987
  45. Junutula, J. R., Raab, H., Clark, S., Bhakta, S., Leipold, D. D., Weir, S., Chen, Y., Simpson, M., Tsai, S. P., Dennis, M. S., Lu, Y., Meng, Y. G., Ng, C., Yang, J., Lee, C. C., Duenas, E., Gorrell, J., Katta, V., Kim, A., McDorman, K., Flagella, K., Venook, R., Ross, S., Spencer, S. D., Lee Wong, W., Lowman, H. B., Vandlen, R., Sliwkowski, M. X., Scheller, R. H., Polakis, P. and Mallet, W. (2008b) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925-932. https://doi.org/10.1038/nbt.1480
  46. Kantarjian, H., Thomas, D., Jorgensen, J., Jabbour, E., Kebriaei, P., Rytting, M., York, S., Ravandi, F., Kwari, M., Faderl, S., Rios, M. B., Cortes, J., Fayad, L., Tarnai, R., Wang, S. A., Champlin, R., Advani, A. and O'Brien, S. (2012) Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 13, 403-411. https://doi.org/10.1016/S1470-2045(11)70386-2
  47. Katz, J., Janik, J. E. and Younes, A. (2011) Brentuximab Vedotin (SGN-35) Clin. Cancer Res. 17, 6428-6436. https://doi.org/10.1158/1078-0432.CCR-11-0488
  48. Kellogg, B. A., Garrett, L., Kovtun, Y., Lai, K. C., Leece, B., Miller, M., Payne, G., Steeves, R., Whiteman, K. R., Widdison, W., Xie, H., Singh, R., Chari, R. V. J., Lambert, J. M. and Lutz, R. J. (2011) Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug. Chem. 22, 717-727. https://doi.org/10.1021/bc100480a
  49. Kim, K. M., McDonagh, C. F., Westendorf, L., Brown, L. L., Sussman, D., Feist, T., Lyon, R., Alley, S. C., Okeley, N. M., Zhang, X., Thompson, M. C., Stone, I., Gerber, H. P. and Carter, P. J. (2008) Anti-CD30 diabody-drug conjugates with potent antitumor activity. Mol. Cancer Ther. 7, 2486-2497. https://doi.org/10.1158/1535-7163.MCT-08-0388
  50. Kim, Y. S., Park, T., Woo, S., Lee, H., Kim, S., Kwon, H., Oh, K., Chung, Y. and Park, Y. H. (2014) ANTIBODY-ACTIVE AGENT CONJUGATES AND METHODS OF USE. US Patent Application 20140187756 A1.
  51. Koblinski, J. E., Ahram, M. and Sloane, B. F. (2000) Unraveling the role of proteases in cancer. Clin. Chim. Acta 291, 113-135. https://doi.org/10.1016/S0009-8981(99)00224-7
  52. Koppe, M. J., Postema, E. J., Aarts, F., Oyen, W. J., Bleichrodt, R. P. and Boerman, O. C. (2005) Antibody-guided radiation therapy of cancer. Cancer Metastasis Rev. 24, 539-567. https://doi.org/10.1007/s10555-005-6195-z
  53. Kung Sutherland, M. S., Walter, R. B., Jeffrey, S. C., Burke, P. J., Yu, C., Kostner, H., Stone, I., Ryan, M. C., Sussman, D., Lyon, R. P., Zeng, W., Harrington, K. H., Klussman, K., Westendorf, L., Meyer, D., Bernstein, I. D., Senter, P. D., Benjamin, D. R., Drachman, J. G. and McEarchern, J. A. (2013) SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 122, 1455-1463. https://doi.org/10.1182/blood-2013-03-491506
  54. Larson, R. A., Sievers, E. L., Stadtmauer, E. A., Lowenberg, B., Estey, E. H., Dombret, H., Theobald, M., Voliotis, D., Bennett, J. M., Richie, M., Leopold, L. H., Berger, M. S., Sherman, M. L., Loken, M. R., van Dongen, J. J., Bernstein, I. D. and Appelbaum, F. R. (2005) Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104, 1442-1452. https://doi.org/10.1002/cncr.21326
  55. Lee, M. D., Dunne, T. S., Chang, C. C., Siegel, M. M., Morton, G. O., Ellestad, G. A., McGahren, W. J. and Borders, D. B. (1992) Calicheamicins, a novel family of antitumor antibiotics. 4. Structure elucidation of calicheamicins.beta.1Br, .gamma.1Br, .alpha.2I, .alpha.3I, .beta.1I, .gamma.1I, and .delta.1I. J. Am. Chem. Soc. 114, 985-997. https://doi.org/10.1021/ja00029a030
  56. Leonard, J. P., Coleman, M., Ketas, J. C., Chadburn, A., Furman, R., Schuster, M. W., Feldman, E. J., Ashe, M., Schuster, S. J., Wegener, W. A., Hansen, H. J., Ziccardi, H., Eschenberg, M., Gayko, U., Fields, S. Z., Cesano, A. and Goldenberg, D. M. (2004) Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma: phase I/II clinical trial results. Clin. Cancer Res. 10, 5327-5334. https://doi.org/10.1158/1078-0432.CCR-04-0294
  57. Lewis Phillips, G. D., Li, G., Dugger, D. L., Crocker, L. M., Parsons, K. L., Mai, E., Blattler, W. A., Lambert, J. M., Chari, R. V. J., Lutz, R. J., Wong, W. L. T., Jacobson, F. S., Koeppen, H., Schwall, R. H., Kenkare-Mitra, S. R., Spencer, S. D. and Sliwkowski, M. X. (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68, 9280-9290. https://doi.org/10.1158/0008-5472.CAN-08-1776
  58. Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G. and Rutter, W. J. (1970) Specific inhibition of nuclear RNA polymerase II by alphaamanitin. Science 170, 447-449. https://doi.org/10.1126/science.170.3956.447
  59. Liu, W., Brock, A., Chen, S., Chen, S. and Schultz, P. G. (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat. Methods 4, 239-244. https://doi.org/10.1038/nmeth1016
  60. Maloney, D. G., Liles, T. M., Czerwinski, D. K., Waldichuk, C., Rosenberg, J., Grillo-Lopez, A. and Levy, R. (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84, 2457-2466.
  61. Mason, S. D. and Joyce, J. A. (2011) Proteolytic networks in cancer. Trends Cell Biol. 21, 228-237. https://doi.org/10.1016/j.tcb.2010.12.002
  62. McDonagh, C. F., Kim, K. M., Turcott, E., Brown, L. L., Westendorf, L., Feist, T., Sussman, D., Stone, I., Anderson, M., Miyamoto, J., Lyon, R., Alley, S. C., Gerber, H. P. and Carter, P. J. (2008) Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol. Cancer Ther. 7, 2913-2923. https://doi.org/10.1158/1535-7163.MCT-08-0295
  63. McDonagh, C. F., Turcott, E., Westendorf, L., Webster, J. B., Alley, S. C., Kim, K., Andreyka, J., Stone, I., Hamblett, K. J., Francisco, J. A. and Carter, P. (2006) Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng. Des. Sel. 19, 299-307. https://doi.org/10.1093/protein/gzl013
  64. Moldenhauer, G., Salnikov, A. V., Luttgau, S., Herr, I., Anderl, J. and Faulstich, H. (2012) Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J. Natl. Cancer Inst. 104, 622-634. https://doi.org/10.1093/jnci/djs140
  65. Moolten, F. L. and Cooperband, S. R. (1970) Selective destruction of target cells by diphtheria toxin conjugated to antibody directed against antigens on the cells. Science 169, 68-70. https://doi.org/10.1126/science.169.3940.68
  66. Morschhauser, F., Radford, J., Van Hoof, A., Vitolo, U., Soubeyran, P., Tilly, H., Huijgens, P. C., Kolstad, A., d'Amore, F., Gonzalez Diaz, M., Petrini, M., Sebban, C., Zinzani, P. L., van Oers, M. H., van Putten, W., Bischof-Delaloye, A., Rohatiner, A., Salles, G., Kuhlmann, J. and Hagenbeek, A. (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J. Clin. Oncol. 26, 5156-5164. https://doi.org/10.1200/JCO.2008.17.2015
  67. Moskowitz, C. H., Nademanee, A., Masszi, T., Agura, E., Holowiecki, J., Abidi, M. H., Chen, A. I., Stiff, P., Gianni, A. M., Carella, A., Osmanov, D., Bachanova, V., Sweetenham, J., Sureda, A., Huebner, D., Sievers, E. L., Chi, A., Larsen, E. K., Hunder, N. N., Walewski, J. and Group, A. S. (2015) Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin's lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 385, 1853-1862. https://doi.org/10.1016/S0140-6736(15)60165-9
  68. Oflazoglu, E., Stone, I. J., Gordon, K., Wood, C. G., Repasky, E. A., Grewal, I. S., Law, C. L. and Gerber, H. P. (2008) Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin. Cancer Res. 14, 6171-6180. https://doi.org/10.1158/1078-0432.CCR-08-0916
  69. Okeley, N. M., Miyamoto, J. B., Zhang, X., Sanderson, R. J., Benjamin, D. R., Sievers, E. L., Senter, P. D. and Alley, S. C. (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin. Cancer Res. 16, 888-897. https://doi.org/10.1158/1078-0432.CCR-09-2069
  70. Oroudjev, E., Lopus, M., Wilson, L., Audette, C., Provenzano, C., Erickson, H., Kovtun, Y., Chari, R. and Jordan, M. A. (2010) Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol. Cancer Ther. 9, 2700-2713. https://doi.org/10.1158/1535-7163.MCT-10-0645
  71. Perrino, E., Steiner, M., Krall, N., Bernardes, G. J. L., Pretto, F., Casi, G. and Neri, D. (2014) Curative properties of noninternalizing antibody-drug conjugates based on maytansinoids. Cancer Res. 74, 2569-2578. https://doi.org/10.1158/0008-5472.CAN-13-2990
  72. Petersen, B. H., DeHerdt, S. V., Schneck, D. W. and Bumol, T. F. (1991) The human immune response to KS1/4-desacetylvinblastine (LY256787) and KS1/4-desacetylvinblastine hydrazide (LY203728) in single and multiple dose clinical studies. Cancer Res. 51, 2286-2290.
  73. Polson, A. G., Calemine-Fenaux, J., Chan, P., Chang, W., Christensen, E., Clark, S., de Sauvage, F. J., Eaton, D., Elkins, K., Elliott, J. M., Frantz, G., Fuji, R. N., Gray, A., Harden, K., Ingle, G. S., Kljavin, N. M., Koeppen, H., Nelson, C., Prabhu, S., Raab, H., Ross, S., Slaga, D. S., Stephan, J. P., Scales, S. J., Spencer, S. D., Vandlen, R., Wranik, B., Yu, S. F., Zheng, B. and Ebens, A. (2009) Antibody-drug conjugates for the treatment of non-Hodgkin's lymphoma: target and linker-drug selection. Cancer Res. 69, 2358-2364. https://doi.org/10.1158/0008-5472.CAN-08-2250
  74. Pro, B., Advani, R., Brice, P., Bartlett, N. L., Rosenblatt, J. D., Illidge, T., Matous, J., Ramchandren, R., Fanale, M., Connors, J. M., Yang, Y., Sievers, E. L., Kennedy, D. A. and Shustov, A. (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190-2196. https://doi.org/10.1200/JCO.2011.38.0402
  75. Rabuka, D., Rush, J. S., deHart, G. W., Wu, P. and Bertozzi, C. R. (2012) Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat. Protoc. 7, 1052-1067. https://doi.org/10.1038/nprot.2012.045
  76. Ramakrishnan, B. and Qasba, P. K. (2002) Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J. Biol. Chem. 277, 20833-20839. https://doi.org/10.1074/jbc.M111183200
  77. Ravry, M. J., Omura, G. A. and Birch, R. (1985) Phase II evaluation of maytansine (NSC 153858) in advanced cancer. A Southeastern Cancer Study Group trial. Am. J. Clin. Oncol. 8, 148-150. https://doi.org/10.1097/00000421-198504000-00007
  78. Remillard, S., Rebhun, L. I., Howie, G. A. and Kupchan, S. M. (1975) Antimitotic activity of the potent tumor inhibitor maytansine. Science 189, 1002-1005. https://doi.org/10.1126/science.1241159
  79. Ricart, A. D. (2011) Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res. 17, 6417-6427. https://doi.org/10.1158/1078-0432.CCR-11-0486
  80. Saito, G., Swanson, J. A. and Lee, K. D. (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 55, 199-215. https://doi.org/10.1016/S0169-409X(02)00179-5
  81. Saleh, M. N., Sugarman, S., Murray, J., Ostroff, J. B., Healey, D., Jones, D., Daniel, C. R., LeBherz, D., Brewer, H., Onetto, N. and LoBuglio, A. F. (2000) Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J. Clin. Oncol. 18, 2282-2292. https://doi.org/10.1200/JCO.2000.18.11.2282
  82. Sanderson, R. J., Hering, M. A., James, S. F., Sun, M. M., Doronina, S. O., Siadak, A. W., Senter, P. D. and Wahl, A. F. (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin. Cancer Res. 11, 843-852.
  83. Sanofi (2014) Phase II two stage finding run in study of SAR3419, an anti-CD19 antibody-maytansine conjugate, administered as a single agent by intravenous infusion in patients with relapsed or refractory acute lymphoblastic leukemia- clinicaltrtals.gov NCT01440179 last updated august 26, 2014. .
  84. Sapra, P., Stein, R., Pickett, J., Qu, Z., Govindan, S. V., Cardillo, T. M., Hansen, H. J., Horak, I. D., Griffiths, G. L. and Goldenberg, D. M. (2005) Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin. Cancer Res. 11, 5257-5264. https://doi.org/10.1158/1078-0432.CCR-05-0204
  85. Scott, A. M., Lee, F. T., Tebbutt, N., Herbertson, R., Gill, S. S., Liu, Z., Skrinos, E., Murone, C., Saunder, T. H., Chappell, B., Papenfuss, A. T., Poon, A. M., Hopkins, W., Smyth, F. E., MacGregor, D., Cher, L. M., Jungbluth, A. A., Ritter, G., Brechbiel, M. W., Murphy, R., Burgess, A. W., Hoffman, E. W., Johns, T. G. and Old, L. J. (2007) A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc. Natl. Acad Sci. U.S.A. 104, 4071-4076. https://doi.org/10.1073/pnas.0611693104
  86. Seattle Genetics (2015) Seattle Genetics Submits Supplemental BLA to FDA for Phase 3 AETHERA Trial of ADCETRIS(R) (Brentuximab Vedotin) in Post-Transplant Hodgkin Lymphoma Patients at High Risk of Relapse, Seattle Genetics company website. http://investor.seattlegenetics.com/phoenix.zhtml?c=124860&p=irolnewsArticle&ID=2017717, Feb. 18, 2015
  87. Shen, B. Q., Xu, K., Liu, L., Raab, H., Bhakta, S., Kenrick, M., Parsons-Reponte, K. L., Tien, J., Yu, S. F., Mai, E., Li, D., Tibbitts, J., Baudys, J., Saad, O. M., Scales, S. J., McDonald, P. J., Hass, P. E., Eigenbrot, C., Nguyen, T., Solis, W. A., Fuji, R. N., Flagella, K. M., Patel, D., Spencer, S. D., Khawli, L. A., Ebens, A., Wong, W. L., Vandlen, R., Kaur, S., Sliwkowski, M. X., Scheller, R. H., Polakis, P. and Junutula, J. R. (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30, 184-189. https://doi.org/10.1038/nbt.2108
  88. Steiner, M. and Neri, D. (2011) Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin. Cancer Res. 17, 6406-6416. https://doi.org/10.1158/1078-0432.CCR-11-0483
  89. Strop, P., Liu, S. H., Dorywalska, M., Delaria, K., Dushin, R. G., Tran, T. T., Ho, W. H., Farias, S., Casas, M. G., Abdiche, Y., Zhou, D., Chandrasekaran, R., Samain, C., Loo, C., Rossi, A., Rickert, M., Krimm, S., Wong, T., Chin, S. M., Yu, J., Dilley, J., Chaparro-Riggers, J., Filzen, G. F., O'Donnell, C. J., Wang, F., Myers, J. S., Pons, J., Shelton, D. L. and Rajpal, A. (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol. 20, 161-167. https://doi.org/10.1016/j.chembiol.2013.01.010
  90. Tolcher, A. W., Ochoa, L., Hammond, L. A., Patnaik, A., Edwards, T., Takimoto, C., Smith, L., de Bono, J., Schwartz, G., Mays, T., Jonak, Z. L., Johnson, R., DeWitte, M., Martino, H., Audette, C., Maes, K., Chari, R. V., Lambert, J. M. and Rowinsky, E. K. (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol. 21, 211-222. https://doi.org/10.1200/JCO.2003.05.137
  91. Tolcher, A. W., Sugarman, S., Gelmon, K. A., Cohen, R., Saleh, M., Isaacs, C., Young, L., Healey, D., Onetto, N. and Slichenmyer, W. (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol. 17, 478-484. https://doi.org/10.1200/JCO.1999.17.2.478
  92. Trail, P. A., Willner, D., Lasch, S. J., Henderson, A. J., Hofstead, S., Casazza, A. M., Firestone, R. A., Hellstrom, I. and Hellstrom, K. E. (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261, 212-215. https://doi.org/10.1126/science.8327892
  93. Treon, S. P., Mitsiades, C., Mitsiades, N., Young, G., Doss, D., Schlossman, R. and Anderson, K. C. (1991) Tumor cell expression of CD59 Is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J. Immunother. 24, 263-271.
  94. Ulbrich, K. and Subr, V. (2004) Polymeric anticancer drugs with pHcontrolled activation. Adv. Drug Deliv. Rev. 56, 1023-1050. https://doi.org/10.1016/j.addr.2003.10.040
  95. van der Neut Kolfschoten, M., Schuurman, J., Losen, M., Bleeker, W. K., Martinez-Martinez, P., Vermeulen, E., den Bleker, T. H., Wiegman, L., Vink, T., Aarden, L. A., De Baets, M. H., van de Winkel, J. G., Aalberse, R. C. and Parren, P. W. (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554-1557. https://doi.org/10.1126/science.1144603
  96. van Der Velden, V. H., te Marvelde, J. G., Hoogeveen, P. G., Bernstein, I. D., Houtsmuller, A. B., Berger, M. S. and van Dongen, J. J. (2001) Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 97, 3197-3204. https://doi.org/10.1182/blood.V97.10.3197
  97. Wang, L., Zhang, Z., Brock, A. and Schultz, P. G. (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad Sci. U.S.A. 100, 56-61. https://doi.org/10.1073/pnas.0234824100
  98. Wong, W. M. (1999) Drug update: trastuzumab: anti-HER2 antibody for treatment of metastatic breast cancer. Cancer Pract. 7, 48-50. https://doi.org/10.1046/j.1523-5394.1999.07108.x
  99. Yang, H. M. and Reisfeld, R. A. (1988) Doxorubicin conjugated with a monoclonal antibody directed to a human melanoma-associated proteoglycan suppresses the growth of established tumor xenografts in nude mice. Proc. Natl. Acad Sci. U.S.A. 85, 1189-1193. https://doi.org/10.1073/pnas.85.4.1189
  100. Younes, A., Gopal, A. K., Smith, S. E., Ansell, S. M., Rosenblatt, J. D., Savage, K. J., Ramchandren, R., Bartlett, N. L., Cheson, B. D., de Vos, S., Forero-Torres, A., Moskowitz, C. H., Connors, J. M., Engert, A., Larsen, E. K., Kennedy, D. A., Sievers, E. L. and Chen, R. (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J. Clin. Oncol. 30, 2183-2189. https://doi.org/10.1200/JCO.2011.38.0410
  101. Young, T. S., Ahmad, I., Yin, J. A. and Schultz, P. G. (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361-374. https://doi.org/10.1016/j.jmb.2009.10.030
  102. Zhao, R. Y., Wilhelm, S. D., Audette, C., Jones, G., Leece, B. A., Lazar, A. C., Goldmacher, V. S., Singh, R., Kovtun, Y., Widdison, W. C., Lambert, J. M. and Chari, R. V. (2011) Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J. Med. Chem. 54, 3606-3623. https://doi.org/10.1021/jm2002958

Cited by

  1. Linkers Having a Crucial Role in Antibody–Drug Conjugates vol.17, pp.4, 2016, https://doi.org/10.3390/ijms17040561
  2. A phase II study of antibody-drug conjugate, TAK-264 (MLN0264) in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C vol.35, pp.5, 2017, https://doi.org/10.1007/s10637-017-0473-9
  3. Advances in antibody–drug conjugates: A new era of targeted cancer therapy 2017, https://doi.org/10.1016/j.drudis.2017.05.011
  4. Development of Solid-Phase Site-Specific Conjugation and Its Application toward Generation of Dual Labeled Antibody and Fab Drug Conjugates vol.27, pp.4, 2016, https://doi.org/10.1021/acs.bioconjchem.6b00054
  5. Determination of Antibody–Drug Conjugate Released Payload Species Using Directed in Vitro Assays and Mass Spectrometric Interrogation vol.27, pp.7, 2016, https://doi.org/10.1021/acs.bioconjchem.6b00192
  6. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo vol.143, pp.10, 2017, https://doi.org/10.1007/s00432-017-2436-0
  7. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate vol.12, pp.5, 2017, https://doi.org/10.1371/journal.pone.0178452
  8. Antibody-Drug Conjugates: Element Technology and General Technology vol.137, pp.5, 2017, https://doi.org/10.1248/yakushi.16-00255-F
  9. Characterization of labeled reagents in ligand-binding assays by a surface plasmon resonance biosensor vol.9, pp.2, 2017, https://doi.org/10.4155/bio-2016-0204
  10. Antibody drug conjugates vol.38, pp.10, 2016, https://doi.org/10.1007/s10529-016-2160-x
  11. Bioconjugation – using selective chemistry to enhance the properties of proteins and peptides as therapeutics and carriers vol.14, pp.34, 2016, https://doi.org/10.1039/C6OB00808A
  12. High-Yield Site-Specific Conjugation of Fibroblast Growth Factor 1 with Monomethylauristatin E via Cysteine Flanked by Basic Residues vol.28, pp.7, 2017, https://doi.org/10.1021/acs.bioconjchem.7b00158
  13. Eradication of Tumors through Simultaneous Ablation of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature vol.31, pp.4, 2017, https://doi.org/10.1016/j.ccell.2017.03.005
  14. Influence of molecular design on biodistribution and targeting properties of an Affibody-fused HER2-recognising anticancer toxin vol.49, pp.3, 2016, https://doi.org/10.3892/ijo.2016.3614
  15. Antibody–drug conjugates for targeted anticancer drug delivery vol.46, pp.4, 2016, https://doi.org/10.1007/s40005-016-0254-z
  16. Recent progress in protein-protein interaction study for EGFR-targeted therapeutics vol.13, pp.9, 2016, https://doi.org/10.1080/14789450.2016.1212665
  17. Novel anti-Sialyl-Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity vol.9, pp.4, 2017, https://doi.org/10.1080/19420862.2017.1290752
  18. Prodrug strategy for cancer cell-specific targeting: A recent overview vol.139, 2017, https://doi.org/10.1016/j.ejmech.2017.08.010
  19. Catabolism of antibody drug conjugates and characterization methods vol.25, pp.12, 2017, https://doi.org/10.1016/j.bmc.2017.04.010
  20. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates vol.43, pp.6, 2016, https://doi.org/10.1007/s10928-016-9495-8
  21. Antibody–drug conjugates and other nanomedicines: the frontier of gynaecological cancer treatment vol.6, pp.6, 2016, https://doi.org/10.1098/rsfs.2016.0054
  22. Antibody-Drug Conjugates as Cancer Therapeutics: Past, Present, and Future vol.57, 2017, https://doi.org/10.1002/jcph.981
  23. Engineering Antibodies as Drugs: Principles and Practice vol.51, pp.6, 2017, https://doi.org/10.1134/S0026893317060097
  24. A developed antibody–drug conjugate rituximab-vcMMAE shows a potent cytotoxic activity against CD20-positive cell line pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1449119
  25. Challenges in Optimising the Successful Construction of Antibody Drug Conjugates in Cancer Therapy vol.7, pp.1, 2018, https://doi.org/10.3390/antib7010011
  26. Molecular engineering of antibodies for site-specific covalent conjugation using CRISPR/Cas9 vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19784-2
  27. Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes pp.00219541, 2018, https://doi.org/10.1002/jcp.27419
  28. Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and non-Ig scaffolds vol.38, pp.6, 2018, https://doi.org/10.1002/med.21498
  29. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody–Drug Conjugates vol.32, pp.5, 2018, https://doi.org/10.1007/s40259-018-0302-5
  30. Tumor stroma–targeted antibody-drug conjugate triggers localized anticancer drug release vol.128, pp.7, 2018, https://doi.org/10.1172/JCI120481
  31. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets vol.8, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2017.01936
  32. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs) vol.7, pp.3, 2018, https://doi.org/10.1080/2162402X.2017.1395127
  33. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy vol.233, pp.9, 2018, https://doi.org/10.1002/jcp.26435
  34. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition vol.7, pp.9, 2015, https://doi.org/10.18632/oncotarget.7231
  35. Delivering natural products and biotherapeutics to improve drug efficacy vol.8, pp.11, 2015, https://doi.org/10.4155/tde-2017-0060
  36. Drug Delivery in Cancer Therapy, Quo Vadis? vol.15, pp.9, 2018, https://doi.org/10.1021/acs.molpharmaceut.8b00037
  37. Toward a Ferrous Iron-Cleavable Linker for Antibody-Drug Conjugates vol.15, pp.5, 2015, https://doi.org/10.1021/acs.molpharmaceut.8b00242
  38. Synthesis and Characterization of Cetuximab-Docetaxel and Panitumumab-Docetaxel Antibody-Drug Conjugates for EGFR-Overexpressing Cancer Therapy vol.15, pp.11, 2015, https://doi.org/10.1021/acs.molpharmaceut.8b00672
  39. Computational transport analysis of antibody-drug conjugate bystander effects and payload tumoral distribution: implications for therapy vol.3, pp.1, 2015, https://doi.org/10.1039/c7me00093f
  40. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases vol.9, pp.None, 2015, https://doi.org/10.3389/fmicb.2018.03158
  41. Caveolae-Mediated Endocytosis as a Novel Mechanism of Resistance to Trastuzumab Emtansine (T-DM1) vol.17, pp.1, 2015, https://doi.org/10.1158/1535-7163.mct-17-0403
  42. Reversing the Tumor Target: Establishment of a Tumor Trap vol.10, pp.None, 2019, https://doi.org/10.3389/fphar.2019.00887
  43. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations vol.26, pp.3, 2019, https://doi.org/10.2174/0929867324666170817152554
  44. Peptide Conjugates with Small Molecules Designed to Enhance Efficacy and Safety vol.24, pp.10, 2015, https://doi.org/10.3390/molecules24101855
  45. Homogeneous antibody-drug conjugates: DAR 2 anti-HER2 obtained by conjugation on isolated light chain followed by mAb assembly vol.12, pp.1, 2020, https://doi.org/10.1080/19420862.2019.1702262
  46. Antibody–Drug Conjugates: A Comprehensive Review vol.18, pp.1, 2015, https://doi.org/10.1158/1541-7786.mcr-19-0582
  47. ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies vol.17, pp.1, 2015, https://doi.org/10.2174/1567201816666191121145109
  48. Insight on the Impact of the Reduction Step on the Site‐Directed Conjugation of an Anti‐HER2 Cysteine‐Engineered Antibody vol.5, pp.11, 2015, https://doi.org/10.1002/slct.201903913
  49. Overcoming trastuzumab resistance in HER2‐positive breast cancer using combination therapy vol.235, pp.4, 2015, https://doi.org/10.1002/jcp.29216
  50. Rapid Evaluation of Antibody Fragment Endocytosis for Antibody Fragment–Drug Conjugates vol.10, pp.6, 2015, https://doi.org/10.3390/biom10060955
  51. Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma vol.21, pp.15, 2015, https://doi.org/10.3390/ijms21155432
  52. Antibody-Drug Conjugates: The New Frontier of Chemotherapy vol.21, pp.15, 2015, https://doi.org/10.3390/ijms21155510
  53. Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma vol.8, pp.9, 2020, https://doi.org/10.3390/biomedicines8090327
  54. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies vol.11, pp.38, 2020, https://doi.org/10.18632/oncotarget.27730
  55. Radioimmunotherapy for solid tumors: spotlight on Glypican-1 as a radioimmunotherapy target vol.13, pp.None, 2015, https://doi.org/10.1177/17588359211022918
  56. An Antibody-Drug Conjugate That Selectively Targets Human Monocyte Progenitors for Anti-Cancer Therapy vol.12, pp.None, 2015, https://doi.org/10.3389/fimmu.2021.618081
  57. What makes a good antibody-drug conjugate? vol.21, pp.7, 2015, https://doi.org/10.1080/14712598.2021.1880562
  58. Recent advances in prodrug-based nanoparticle therapeutics vol.165, pp.None, 2015, https://doi.org/10.1016/j.ejpb.2021.04.025
  59. Antibody Conjugates for Sarcoma Therapy: How Far along Are We? vol.9, pp.8, 2015, https://doi.org/10.3390/biomedicines9080978
  60. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist’s Perspective vol.10, pp.3, 2021, https://doi.org/10.3390/antib10030030
  61. Therapeutic Targeting of Acute Myeloid Leukemia by Gemtuzumab Ozogamicin vol.13, pp.18, 2015, https://doi.org/10.3390/cancers13184566
  62. Antibody-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives vol.13, pp.10, 2021, https://doi.org/10.3390/pharmaceutics13101705
  63. Antibody-drug conjugate and free geldanamycin combination therapy enhances anti-cancer efficacy vol.610, pp.None, 2021, https://doi.org/10.1016/j.ijpharm.2021.121272
  64. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development vol.340, pp.None, 2021, https://doi.org/10.1016/j.jconrel.2021.10.006
  65. Effect of Conjugation Site and Technique on the Stability and Pharmacokinetics of Antibody-Drug Conjugates vol.110, pp.12, 2021, https://doi.org/10.1016/j.xphs.2021.08.002