DOI QR코드

DOI QR Code

Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

  • Artar, Musa (Department of Civil Engineering, Bayburt University) ;
  • Daloglu, Ayse T. (Department of Civil Engineering, Karadeniz Technical University)
  • Received : 2015.01.06
  • Accepted : 2015.03.21
  • Published : 2015.10.25

Abstract

A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases.

Keywords

References

  1. AISC-ASD (1989), Manual of Steel Construction: Allowable Stress Design, American Institute of Steel Construction, Chicago, IL, USA.
  2. Aydogdu, I. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029
  3. Choi, S.H. and Kim, S.E. (2006), "Optimal design of semi-rigid steel frames using practical nonlinear inelastic analysis", Steel Struct., 6, 141-152.
  4. Daloglu, A. and Armutcu, M. (1998), "Optimum design of plane steel frames using genetic algorithm", IMO Teknik Dergi, 116, 1601-1615.
  5. Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct. Multidisc. Optim., 42(5), 755-768. https://doi.org/10.1007/s00158-010-0533-7
  6. Degertekin, S.O., Hayalioglu, M.S. and Gorgun, H. (2009), "Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm", Steel Compos. Struct., Int. J., 9(6), 535-555. https://doi.org/10.12989/scs.2009.9.6.535
  7. Dede, T. and Ayvaz, Y. (2013), "Structural optimization with teaching-learning-based optimization algorithm", Struct. Eng. Mech., Int. J., 47(4), 495-511. https://doi.org/10.12989/sem.2013.47.4.495
  8. Dhillon, B.S. and O'Malley, J.W. (1999), "Interactive design of semirigid steel frames", J. Struct. Eng. ASCE, 125(5), 556-564. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(556)
  9. Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J. AISC, 29(3), 111-115.
  10. Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H. (2000), "Optimal design of planar and space structures with genetic algorithms", Comput. Struct., 75(2), 209-224. https://doi.org/10.1016/S0045-7949(99)00084-X
  11. Esen, Y. and Ulker, M. (2008), "Optimization of multi storey space steel frames, materially and geometrically properties non-linear", J. Fac. Eng. Arch. Gazi Univ., 23(2), 485-494.
  12. Filho, M.S., Guimaraes, M.J.R., Sahlit, C.L. and Brito, J.L.V. (2004), "Wind Pressures in Framed Structures with Semi-rigid Connections", J. Braz. Soc. Mech. Sci. Eng., 26(2), 180-189.
  13. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, USA.
  14. Gorgun, H. and Yilmaz, S. (2012), "Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations", Struct. Eng. Mech., Int. J., 44(4), 539-569. https://doi.org/10.12989/sem.2012.44.4.539
  15. Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., Int. J., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323
  16. Hayalioglu, M.S. and Degertekin, S.O. (2004a), "Design of non-linear steel frames for stress and displacement constraints with semi-rigid connections via gentic optimization", Struct. Multidisc. Optim., 27(4), 259-271. https://doi.org/10.1007/s00158-003-0357-9
  17. Hayalioglu, M.S. and Degertekin, S.O. (2004b), "Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections", Steel Compos. Struct., Int. J., 4(6), 453-469. https://doi.org/10.12989/scs.2004.4.6.453
  18. Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
  19. Kameshki, E.S. and Saka, M.P. (2001), "Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm", Comput. Struct., 79(17), 1593-1604. https://doi.org/10.1016/S0045-7949(01)00035-9
  20. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., Int. J., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
  21. MATLAB (2009), The Language of Technical Computing, The Mathworks Inc.; Natick, MA, USA.
  22. Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng. ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
  23. Salmon, C.G. and Johnson, J.E. (1980), Steel Structures: Design and Behavior, Harper & Row, New York, NY, USA.
  24. Simoes, L.M.C. (1996), "Optimization of frames with semi rigid connections", Comput. Struct., 60(4), 531-539. https://doi.org/10.1016/0045-7949(95)00427-0
  25. Togan, V. (2012), "Design of planar steel frames using teaching-learning based optimization", Eng. Struct., 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035
  26. Wang, J.F. and Li, G.Q. (2007), "Stability analysis of semi-rigid composite frames", Steel Compos. Struct., Int. J., 7(2), 119-133. https://doi.org/10.12989/scs.2007.7.2.119

Cited by

  1. A comparative study on optimum design of multi-element truss structures vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.521
  2. Optimum Seismic Design of 3D Irregular Steel Frames Using Recently Developed Metaheuristic Algorithms vol.32, pp.3, 2018, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000760
  3. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/3854620
  4. Design of steel frames by an enhanced moth-flame optimization algorithm vol.24, pp.1, 2015, https://doi.org/10.12989/scs.2017.24.1.129
  5. Optimization of long span portal frames using spatially distributed surrogates vol.24, pp.2, 2015, https://doi.org/10.12989/scs.2017.24.2.227
  6. Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2015, https://doi.org/10.12989/sem.2017.63.5.607
  7. A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms vol.66, pp.2, 2015, https://doi.org/10.12989/sem.2018.66.2.173
  8. Assessing the ductility of moment frames utilizing genetic algorithm and artificial neural networks vol.5, pp.4, 2015, https://doi.org/10.12989/smm.2018.5.4.445
  9. Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2015, https://doi.org/10.12989/sem.2019.70.2.221
  10. Optimum Design of Infinite Perforated Orthotropic and Isotropic Plates vol.8, pp.4, 2015, https://doi.org/10.3390/math8040569
  11. Genetic Algorithm for Embodied Energy Optimisation of Steel-Concrete Composite Beams vol.12, pp.8, 2020, https://doi.org/10.3390/su12083102
  12. Experimental study on seismic behavior of exterior composite beam-to-column joints with large size stiffened angles vol.37, pp.1, 2015, https://doi.org/10.12989/scs.2020.37.1.015
  13. Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.805