DOI QR코드

DOI QR Code

Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading

  • Kar, Vishesh R. (Department of Mechanical Engineering, National Institute of Technology) ;
  • Mahapatra, Trupti R. (School of Mechanical Engineering, KIIT University) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, National Institute of Technology)
  • Received : 2014.11.13
  • Accepted : 2015.04.02
  • Published : 2015.10.25

Abstract

In this article, large amplitude bending behaviour of laminated composite flat panel under combined effect of moisture, temperature and mechanical loading is investigated. The laminated composite panel model has been developed mathematically by introducing the geometrical nonlinearity in Green-Lagrange sense in the framework of higher-order shear deformation theory. The present study includes the degraded composite material properties at elevated temperature and moisture concentration. In order to achieve any general case, all the nonlinear higher order terms have been included in the present formulation and the material property variations are introduced through the micromechanical model. The nonlinear governing equation is obtained using the variational principle and discretised using finite element steps. The convergence behaviour of the present numerical model has been checked. The present proposed model has been validated by comparing the responses with those available published results. Some new numerical examples have been solved to show the effect of various parameters on the bending behaviour of laminated composite flat panel under hygro-thermo-mechanical loading.

Keywords

References

  1. Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vessels Piping", 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
  2. Chamis, C.C. (1987), "Simplified Composite Micromechanics Equations for Mechanical, Thermal and Moisture Related Properties, Engineers Guide to Composite Materials, ASM International; Materials Park, OH, USA.
  3. Chamis, C.C. and Sinclair, J.H. (1982), "Durability/life of fibre composites in hygro-thermo-mechanical environments", Proceedings of the Composite Materials: Testing and Design (6th Conference), ASTM, Phoenix, Arizona, May, Volume 787, pp. 498-512.
  4. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, (4th Edition), John Wiley & Sons Pvt. Ltd., Singapore.
  5. Hari Kishore, M.D.V., Singh, B.N. and Pandit, M.K. (2011), "Nonlinear static analysis of smart laminated composite plate", Aerosp. Sci. Technol., 15(3), 224-235. https://doi.org/10.1016/j.ast.2011.01.003
  6. Huang, X.L., Shen, H.S. and Zheng, J.J. (2004), "Nonlinear vibration and dynamic response of shear deformable laminated plates in hygrothermal environments", Compos. Sci. Technol., 64(10-11), 1419-1435. https://doi.org/10.1016/j.compscitech.2003.09.028
  7. Kumar, R. and Patil, H.S. (2013), "Hygrothermally induced nonlinear free vibration response of nonlinear elastically supported laminated composite plates with random system properties", Frontiers Aerosp. Eng., 2(2), 143-156.
  8. Kundu, C.K., Maiti, D.K and Sinha, P.K. (2007), "Nonlinear finite element analysis of laminated composite doubly curved shells in hygrothermal environment", J. Reinf. Plast. Comp., 26(14), 1461. https://doi.org/10.1177/0731684407079751
  9. Lal, A. Singh, B.N. and Anand, S. (2011), "Nonlinear bending response of laminated composite spherical shell panel with system randomness subjected to hygro-thermo-mechanical loading", Int. J. Mech. Sci., 53(10), 855-866. https://doi.org/10.1016/j.ijmecsci.2011.07.008
  10. Liu, C.F. and Huang, C.H. (1996), "Free vibration of composite laminated plates subjected to temperature changes", Comput. Struct., 60(1), 95-101. https://doi.org/10.1016/0045-7949(95)00358-4
  11. Lo, S.H., Zhen, W., Cheung, Y.K. and Wanji, C. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher order theory", Compos. Struct., 92(3), 633-646. https://doi.org/10.1016/j.compstruct.2009.09.034
  12. Naidu, N.V.S. and Sinha, P.K. (2005), "Nonlinear finite element analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 69(4), 387-395. https://doi.org/10.1016/j.compstruct.2004.07.019
  13. Panda, S.K. and Mahapatra, T.R. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49(1), 191-213. https://doi.org/10.1007/s11012-013-9785-9
  14. Parhi, P.K., Bhattacharyya, S.K. and Sinha, P.K. (2001), "Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells", J. Sound Vib., 248(2), 195-214. https://doi.org/10.1006/jsvi.2000.3506
  15. Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
  16. Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Academic Press, Oxford, UK.
  17. Reddy, J.N. (2004), Mechanics of Laminated Composite: Plates and Shells-Theory and Analysis, (2nd Edition), CRC press, Boca Raton, FL, USA.
  18. Sai Ram, K.S. and Sinha, P.K. (1991), "Hygrothermal effects on the bending characteristics of laminated composite plates", Comput. Struct., 40(4), 1009-1015. https://doi.org/10.1016/0045-7949(91)90332-G
  19. Sharma, A., Upadhyay, A.K. and Shukla, K.K. (2013), "Flexural response of doubly curved laminated composite shells", Sci. China Phys. Mech. Astron., 56(4), 812-817. https://doi.org/10.1007/s11433-013-5020-x
  20. Shen, H.S. (2002), "Hygrothermal effects on the nonlinear bending of shear deformable laminated plates", J. Eng. Mech., 128(4), 493-496. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:4(493)
  21. Shen, H.S, Zheng, J.J. and Huang, X.L. (2004), "The effects of hygrothermal conditions on the dynamic response of shear deformable laminated plates resting on elastic foundations", J. Reinf. Plast. Comp., 23(10), 1095. https://doi.org/10.1177/0731684404037038
  22. Sundaramoorthy, R., David, W. and Murray, M. (1973), "Incremental finite element matrices", J. Struct. Div., 99(12), 2423-2438.
  23. Szekrenyes, A. (2014), "Bending solution of third-order orthotropic Reddy plates with asymmetric interfacial crack", Int. J. Solid. Struct., 51(14), 2598-2619. https://doi.org/10.1016/j.ijsolstr.2014.03.027
  24. Upadhyay, P.C. and Lyons, J.S. (2000), "Effect of hygrothermal environment on the bending of PMC laminates under large deflection", J. Reinf. Plast. Comp., 19(6), 465. https://doi.org/10.1106/5TP7-CX5C-88RK-BJ4C
  25. Upadhyay, A.K., Pandey, R. and Shukla, K.K. (2010), "Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading", Commun. Nonlinear Sci. Numer. Simul., 15(9), 2634-2650. https://doi.org/10.1016/j.cnsns.2009.08.026
  26. Zenkour, A.M. (2012), "Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory", Compos. Struct., 94(12), 3685-3696 https://doi.org/10.1016/j.compstruct.2012.05.033
  27. Zenkour, A.M., Alam, M.N.M. and Radwan, A.F. (2014), "Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations", Arch. Civil Mech. Eng., 14(1), 144-159. https://doi.org/10.1016/j.acme.2013.07.008
  28. Zhang, Y.X. and Kim, K.S. (2006), "Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements", Compos. Struct., 72(3), 301-310. https://doi.org/10.1016/j.compstruct.2005.01.001
  29. Zhang, Y.X. and Yang, C.H. (2006), "A family of simple and robust finite elements for linear and geometrically nonlinear analysis of laminated composite plates", Compos. Struct., 75(1-4), 545-552. https://doi.org/10.1016/j.compstruct.2006.04.016

Cited by

  1. Hygrothermal effects on the flexural strength of laminated composite cylindrical panels vol.115, 2016, https://doi.org/10.1088/1757-899X/115/1/012040
  2. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  3. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  4. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  5. Hygrothermal Effects on the Free Vibration Behavior of Composite Plate Using nth-Order Shear Deformation Theory: a Micromechanical Approach 2019, https://doi.org/10.1007/s40997-017-0140-y
  6. Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.733
  7. Electro-Magneto-Elastic Response of Laminated Composite Plate: A Finite Element Approach vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0256-6
  8. A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
  9. fiber by steam explosion pp.1544-046X, 2018, https://doi.org/10.1080/15440478.2018.1477085
  10. Supersonic nonlinear flutter of cross-ply laminated shallow shells pp.2041-3025, 2019, https://doi.org/10.1177/0954410019827461
  11. A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates vol.22, pp.5, 2015, https://doi.org/10.12989/scs.2016.22.5.975
  12. Hygrothermal effects on buckling of composite shell-experimental and FEM results vol.22, pp.6, 2016, https://doi.org/10.12989/scs.2016.22.6.1445
  13. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.289
  14. A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.401
  15. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2015, https://doi.org/10.12989/sem.2017.64.6.737
  16. A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
  17. Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2015, https://doi.org/10.12989/sem.2018.65.5.621
  18. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2015, https://doi.org/10.12989/gae.2018.14.6.519
  19. Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
  20. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2015, https://doi.org/10.12989/gae.2018.15.1.711
  21. Three dimensional finite elements modeling of FGM plate bending using UMAT vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.487
  22. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2015, https://doi.org/10.12989/sem.2018.67.3.291
  23. Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings vol.33, pp.1, 2015, https://doi.org/10.12989/scs.2019.33.1.081
  24. Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory vol.24, pp.6, 2019, https://doi.org/10.12989/cac.2019.24.6.489
  25. Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.191
  26. A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation vol.34, pp.4, 2015, https://doi.org/10.12989/scs.2020.34.4.511
  27. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
  28. A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
  29. An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates vol.74, pp.3, 2015, https://doi.org/10.12989/sem.2020.74.3.365
  30. 2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models vol.22, pp.4, 2020, https://doi.org/10.12989/gae.2020.22.4.361
  31. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation vol.26, pp.3, 2015, https://doi.org/10.12989/cac.2020.26.3.213