References
- Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vessels Piping", 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
- Chamis, C.C. (1987), "Simplified Composite Micromechanics Equations for Mechanical, Thermal and Moisture Related Properties, Engineers Guide to Composite Materials, ASM International; Materials Park, OH, USA.
- Chamis, C.C. and Sinclair, J.H. (1982), "Durability/life of fibre composites in hygro-thermo-mechanical environments", Proceedings of the Composite Materials: Testing and Design (6th Conference), ASTM, Phoenix, Arizona, May, Volume 787, pp. 498-512.
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, (4th Edition), John Wiley & Sons Pvt. Ltd., Singapore.
- Hari Kishore, M.D.V., Singh, B.N. and Pandit, M.K. (2011), "Nonlinear static analysis of smart laminated composite plate", Aerosp. Sci. Technol., 15(3), 224-235. https://doi.org/10.1016/j.ast.2011.01.003
- Huang, X.L., Shen, H.S. and Zheng, J.J. (2004), "Nonlinear vibration and dynamic response of shear deformable laminated plates in hygrothermal environments", Compos. Sci. Technol., 64(10-11), 1419-1435. https://doi.org/10.1016/j.compscitech.2003.09.028
- Kumar, R. and Patil, H.S. (2013), "Hygrothermally induced nonlinear free vibration response of nonlinear elastically supported laminated composite plates with random system properties", Frontiers Aerosp. Eng., 2(2), 143-156.
- Kundu, C.K., Maiti, D.K and Sinha, P.K. (2007), "Nonlinear finite element analysis of laminated composite doubly curved shells in hygrothermal environment", J. Reinf. Plast. Comp., 26(14), 1461. https://doi.org/10.1177/0731684407079751
- Lal, A. Singh, B.N. and Anand, S. (2011), "Nonlinear bending response of laminated composite spherical shell panel with system randomness subjected to hygro-thermo-mechanical loading", Int. J. Mech. Sci., 53(10), 855-866. https://doi.org/10.1016/j.ijmecsci.2011.07.008
- Liu, C.F. and Huang, C.H. (1996), "Free vibration of composite laminated plates subjected to temperature changes", Comput. Struct., 60(1), 95-101. https://doi.org/10.1016/0045-7949(95)00358-4
- Lo, S.H., Zhen, W., Cheung, Y.K. and Wanji, C. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher order theory", Compos. Struct., 92(3), 633-646. https://doi.org/10.1016/j.compstruct.2009.09.034
- Naidu, N.V.S. and Sinha, P.K. (2005), "Nonlinear finite element analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 69(4), 387-395. https://doi.org/10.1016/j.compstruct.2004.07.019
- Panda, S.K. and Mahapatra, T.R. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49(1), 191-213. https://doi.org/10.1007/s11012-013-9785-9
- Parhi, P.K., Bhattacharyya, S.K. and Sinha, P.K. (2001), "Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells", J. Sound Vib., 248(2), 195-214. https://doi.org/10.1006/jsvi.2000.3506
- Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
- Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Academic Press, Oxford, UK.
- Reddy, J.N. (2004), Mechanics of Laminated Composite: Plates and Shells-Theory and Analysis, (2nd Edition), CRC press, Boca Raton, FL, USA.
- Sai Ram, K.S. and Sinha, P.K. (1991), "Hygrothermal effects on the bending characteristics of laminated composite plates", Comput. Struct., 40(4), 1009-1015. https://doi.org/10.1016/0045-7949(91)90332-G
- Sharma, A., Upadhyay, A.K. and Shukla, K.K. (2013), "Flexural response of doubly curved laminated composite shells", Sci. China Phys. Mech. Astron., 56(4), 812-817. https://doi.org/10.1007/s11433-013-5020-x
- Shen, H.S. (2002), "Hygrothermal effects on the nonlinear bending of shear deformable laminated plates", J. Eng. Mech., 128(4), 493-496. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:4(493)
- Shen, H.S, Zheng, J.J. and Huang, X.L. (2004), "The effects of hygrothermal conditions on the dynamic response of shear deformable laminated plates resting on elastic foundations", J. Reinf. Plast. Comp., 23(10), 1095. https://doi.org/10.1177/0731684404037038
- Sundaramoorthy, R., David, W. and Murray, M. (1973), "Incremental finite element matrices", J. Struct. Div., 99(12), 2423-2438.
- Szekrenyes, A. (2014), "Bending solution of third-order orthotropic Reddy plates with asymmetric interfacial crack", Int. J. Solid. Struct., 51(14), 2598-2619. https://doi.org/10.1016/j.ijsolstr.2014.03.027
- Upadhyay, P.C. and Lyons, J.S. (2000), "Effect of hygrothermal environment on the bending of PMC laminates under large deflection", J. Reinf. Plast. Comp., 19(6), 465. https://doi.org/10.1106/5TP7-CX5C-88RK-BJ4C
- Upadhyay, A.K., Pandey, R. and Shukla, K.K. (2010), "Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading", Commun. Nonlinear Sci. Numer. Simul., 15(9), 2634-2650. https://doi.org/10.1016/j.cnsns.2009.08.026
- Zenkour, A.M. (2012), "Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory", Compos. Struct., 94(12), 3685-3696 https://doi.org/10.1016/j.compstruct.2012.05.033
- Zenkour, A.M., Alam, M.N.M. and Radwan, A.F. (2014), "Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations", Arch. Civil Mech. Eng., 14(1), 144-159. https://doi.org/10.1016/j.acme.2013.07.008
- Zhang, Y.X. and Kim, K.S. (2006), "Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements", Compos. Struct., 72(3), 301-310. https://doi.org/10.1016/j.compstruct.2005.01.001
- Zhang, Y.X. and Yang, C.H. (2006), "A family of simple and robust finite elements for linear and geometrically nonlinear analysis of laminated composite plates", Compos. Struct., 75(1-4), 545-552. https://doi.org/10.1016/j.compstruct.2006.04.016
Cited by
- Hygrothermal effects on the flexural strength of laminated composite cylindrical panels vol.115, 2016, https://doi.org/10.1088/1757-899X/115/1/012040
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
- Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
- Hygrothermal Effects on the Free Vibration Behavior of Composite Plate Using nth-Order Shear Deformation Theory: a Micromechanical Approach 2019, https://doi.org/10.1007/s40997-017-0140-y
- Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.733
- Electro-Magneto-Elastic Response of Laminated Composite Plate: A Finite Element Approach vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0256-6
- A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
- fiber by steam explosion pp.1544-046X, 2018, https://doi.org/10.1080/15440478.2018.1477085
- Supersonic nonlinear flutter of cross-ply laminated shallow shells pp.2041-3025, 2019, https://doi.org/10.1177/0954410019827461
- A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates vol.22, pp.5, 2015, https://doi.org/10.12989/scs.2016.22.5.975
- Hygrothermal effects on buckling of composite shell-experimental and FEM results vol.22, pp.6, 2016, https://doi.org/10.12989/scs.2016.22.6.1445
- Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.289
- A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.401
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2015, https://doi.org/10.12989/sem.2017.64.6.737
- A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
- Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2015, https://doi.org/10.12989/sem.2018.65.5.621
- Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2015, https://doi.org/10.12989/gae.2018.14.6.519
- Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
- Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2015, https://doi.org/10.12989/gae.2018.15.1.711
- Three dimensional finite elements modeling of FGM plate bending using UMAT vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.487
- Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2015, https://doi.org/10.12989/sem.2018.67.3.291
- Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings vol.33, pp.1, 2015, https://doi.org/10.12989/scs.2019.33.1.081
- Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory vol.24, pp.6, 2019, https://doi.org/10.12989/cac.2019.24.6.489
- Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.191
- A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation vol.34, pp.4, 2015, https://doi.org/10.12989/scs.2020.34.4.511
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
- An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates vol.74, pp.3, 2015, https://doi.org/10.12989/sem.2020.74.3.365
- 2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models vol.22, pp.4, 2020, https://doi.org/10.12989/gae.2020.22.4.361
- Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation vol.26, pp.3, 2015, https://doi.org/10.12989/cac.2020.26.3.213