Acknowledgement
Grant : The behaviour and design of composite columns coupling the benefits of high-strength steel and high-strength concrete for large scale infrastructure
Supported by : Australian Research Council
References
- American Concrete Institute (ACI) (2005), Building code requirements for structural concrete and commentary, ACI 318-05; Farmington Hills, MI, USA.
- American Concrete Institute (ACI) (2008), Building code requirements for structural concrete and commentary, ACI 318-08; Farmington Hills, MI, USA.
- American Institute of Steel Construction (ANSI/AISC 360-05) (2005), "Specification for structural steel buildings", Chicago, Illinois, USA.
- American Institute of Steel Construction (ANSI/AISC 360-10) (2010), Specification for Structural Steel Buildings, An American National Standard.
- Architectural Institute of Japan (AIJ) (2001), Recommendations for design and construction of concrete filled steel tubular structures, Japan. [In Japanese]
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Behaviour and design of composite columns incorporating compact high-strength steel plates", J. Constr. Steel Res., 107, 94-110. https://doi.org/10.1016/j.jcsr.2015.01.005
- CECS 28:90 (1992), Specification for design and construction of concrete-filled steel tubular structures, China Planning Press; Beijing, China. [In Chinese]
- DBJ 13-51-2003 (2003), Technical specification for concrete-fi lled steel tubular structures, The Construction Department of Fujian Province; Fuzhou, China. [In Chinese]
- De Oliveira, W.L.A., De Nardin, S., De Cresce, A.L.H. and El Debs, M.K. (2009), "Influence of concrete strength and length/diameter on the axial capacity of CFT columns", J. Constr. Steel Res., 65(12), 2103-2110. https://doi.org/10.1016/j.jcsr.2009.07.004
- Eurocode 4 (2004), Design of composite steel and concrete structures, Part1.1, General rules and rules for Building, BS EN 1994-1-1; British Standards Institution, London, UK.
- Fujimoto, T., Nishiyama, I., Mukai, A. and Baba, T. (1995), "Test results of eccentrically loaded short columns-square CFT columns", Proceedings of the Second Joint Technical Coordinating Committee Meeting on Composite and Hybrid Structures, Honolulu, HI, USA, June.
- Gho, W.M. and Liu, D.L. (2004), "Flexural behaviour of high-strength rectangular concrete-filled steel hollow sections", J. Constr. Steel Res., 60(11), 1681-1696. https://doi.org/10.1016/j.jcsr.2004.03.007
- GJB 4142-2000 (2001), Technical specifications for early-strength model composite structure used for navy port emergency repair in wartime, General Logistics Department of People's Liberation Army. [In Chinese]
- Han, L.H., Liu, W. and Yang, Y.F. (2008), "Design calculations on concrete-filled thin-walled steel tubes subjected to axially local compression", Proceedings of Tubular Structures XII, Shanghai, China, October, pp. 85-91.
- Hernandez-Figueirido, D., Romero, M.L., Bonet, J.L. and Montalva, J.M. (2012), "Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities", J. Constr. Steel Res., 68(1), 107-117. https://doi.org/10.1016/j.jcsr.2011.07.014
- Hong Kong Buildings Department (2005), Code of practice for the structural use of steel.
- Johansson, M. (2002), "The efficiency of passive confinement in CFT columns", Steel Compos. Struct., Int. J., 2(5), 379-396. https://doi.org/10.12989/scs.2002.2.5.379
- Johansson, M. and Gylltoft, K. (2001), "Structural behavior of slender circular steel-concrete composite columns under various means of load application", Steel Compos. Struct., Int. J., 1(4), 393-410. https://doi.org/10.12989/scs.2001.1.4.393
- Kilpatrick, A.E. and Rangan, B.V. (1999a), "Tests on high-strength concrete-filled steel tubular columns", ACI Struct. J., 96(2), 268-274.
- Kilpatrick, A.E. and Rangan, B.V. (1999b), "Influence of interfacial shear transfer on behavior of concrete-filled steel tubular columns", ACI Struct. J., 96(4), 642-648.
- Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012
- Liew, J.Y.R. and Xiong, D.X. (2010), "Ultra-high-strength concrete filled columns for high rise buildings", Proceedings of the 4th International Conference on Steel & Composite Structures, (Keynote Lecture), Sydney, Australia, July, pp. 80-91.
- Liew, J.Y.R and Xiong, D.X. (2012), "Ultra-high-strength concrete filled composite columns for multi-storey building construction", Adv. Struct. Eng., 15(9), 1487-1503. https://doi.org/10.1260/1369-4332.15.9.1487
- Liew, J.Y.R., Chia, K.S., Kazi, M.A.S. and Xiong, D.X. (2008), "Innovation in Composite Construction-Towards the Extreme of High-strength and Lightweight", Proceeding of the Fifth International Conference on Coupled Instabilities in Metal Structures, (K. Rasmussen and T. Wilkinson Ed.), Mansonic Centre, Sydney, Australia, June, pp. 19-33.
- Liu, D.L. (2004), "Behaviour of high-strength rectangular concrete-filled steel hollow section columns under eccentric loading," Thin-Wall. Struct., 42(12), 1631-1644. https://doi.org/10.1016/j.tws.2004.06.002
- Liu, D.L. (2005), "Tests on high-strength rectangular concrete-filled steel hollow section stub columns", J. Constr. Steel Res., 61(7), 902-911. https://doi.org/10.1016/j.jcsr.2005.01.001
- Liu, D.L. (2006), "Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns", J. Constr. Steel Res., 62(8), 839-846. https://doi.org/10.1016/j.jcsr.2005.11.020
- Liu, D., Gho, W.M. and Yuan, J. (2003), "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns", J. Constr. Steel Res., 59(12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8
- Lu, Z.H. and Zhao, Y.G. (2009), "A new design equation developed from Eurocode 4-2004 for concrete filled steel tubes", Proceedings of the Sixth International Conference on Behavior of Steel Structures in Seismic Areas (STESSA 2009), Philadelphia, PA, USA, August.
- Melcher, J.J. and Karmazinova, M. (2004), "The analysis of composite steel-and concrete compression members with high-strength concrete", Proceedings of SSRC Annual Technical Session, pp. 223-237.
- Mursi, M. and Uy, B. (2003), "Strength of concrete filled steel box columns incorporating interaction buckling", J. Struct. Eng.-ASCE, 129(5), 626-639. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(626)
- Mursi, M. and Uy, B. (2004), "Strength of slender concrete filled high-strength steel box columns", J. Constr. Steel Res., 6(12), 1825-1848.
- Mursi, M. and Uy, B. (2006a), "Behaviour and design of fabricated high-strength steel columns subjected to biaxial bending, Part 1: Experiments", Int. J. Adv. Steel Constr., Hong Kong Institute of Steel Construction, 2(4), 286-315.
- Mursi, M. and Uy, B. (2006b), "Behaviour and design of fabricated high-strength steel columns subjected to biaxial bending, Part 2: Analysis and design codes", Int. J. Adv. Steel Constr., Hong Kong Institute of Steel Construction, 2(4), 316-354.
- National Standard of the People's Republic of China (GB50010-2002) (2002), Code for design of concrete structure, China Communications Press; Beijing, China. [In Chinese]
- National Standard of the People's Republic of China (GB50017-2003) (2003), Code for design of steel structures, China Planning Press; Beijing, China. [In Chinese]
- Packer, J.A. and Henderson, J.E. (2003), "Hollow structural section connections and trusses-A design guide", Canadian Institute of Steel Construction (CISC); Toronto, Canada.
- Portoles, J.M., Romero, M.L., Filippou, F.C. and Bonet, J.L. (2011), "Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns", Eng. Struct., 33, 1576-1593. https://doi.org/10.1016/j.engstruct.2011.01.028
- Rangan, B.V. and Joyce, M. (1992), "Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete", ACI Struct. J., 89(6), 676-681.
- Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng.-ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
- Sen, H.K. (1969), "Triaxial effects in concrete-filled tubular steel columns", Ph.D. Thesis; University of London, England, UK.
- Standards Association of Australia (2014a), AS/NZS 5100: Part 6-2014, Bridge Structures: Steel and Composite Structures, Sydney, Australia. [In Preparation]
- Standards Association of Australia (2014b), AS/NZS 2327-2014: Composite Structures, Sydney, Australia. [In Preparation]
- Standards Australia (AS3600-2001) (2001), Australian Standard: Concrete Structures.
- Standards Australia (AS5100.6-2004) (2004), Bridge design, Part 6: Steel and composite construction, Sydney, Australia.
- Standards Australia (AS3600-2009) (2009), Australian Standard: Concrete Structures.
- Standards Australia (AS4100-1998) (2012), Amdt1-2012: Australian Standard: Steel structures.
- Tao, Z., Uy, B., Han, L.H. and He, S.H. (2008), "Design of concrete-filled steel tubular members according to the Australian Standard AS 5100 model and calibration", Aust. J. Struct. Eng., 8(3), 197-214.
- Uy, B. (1999), "Axial compressive strength of steel and composite columns fabricated with high-strength steel plate", Proceedings of the Second International Conference on Advances in Steel Structures, Hong Kong, December, pp. 421-428.
- Uy, B. (2000), "Strength of short concrete filled steel box columns incorporating local buckling", J. Struct. Eng.-ASCE, 126(3), 341-352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)
- Uy, B. (2001a), "Axial compressive strength of short steel and composite columns fabricated with high-strength steel plate", Steel Compos. Struct., Int. J., 1(2), 113-134.
- Uy, B. (2001b), "Strength of short concrete filled high-strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
- Uy, B., Mursi, M. and Tan, A. (2002), "Strength of slender composite columns fabricated with high-strength structural steel", Proceedings of ICASS'02 Third International Conference on Advances in Steel Structures, Hong Kong, December, pp. 575-582.
- Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2013), "Behaviour and design of high-strength steel concrete filled columns", Proceedings of the 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, September, pp. 150-167.
- Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002a), "Experimental behavior of high-strength square concrete-filled steel tube beam-columns", J. Struct. Eng.-ASCE, 128(3), 309-318. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(309)
- Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002b), "Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns", J. Constr. Steel Res., 58(5-8), 725-758. https://doi.org/10.1016/S0143-974X(01)00099-2
- Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2004), "Seismic behavior and design of high-strength square concrete-filled steel tube beam columns", J. Struct. Eng.-ASCE, 130(2), 169-179. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(169)
- Yi, S.-T., Yang, E.-I. and Choi, J.-Ch. (2006), "Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete", Nucl. Eng. Des., 235, 115-127.
- Yu, X.M. and Chen, B.C. (2011), "A statistical method for predicting the axial load capacity of concrete filled steel tubular columns", Int. J. Civil Env. Eng., 11(2), 20-39.
- Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001
Cited by
- Confined concrete model of circular, elliptical and octagonal CFST short columns vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.497
- Calculating the Strength of Concrete Filled Steel Tube Columns of Solid and Ring Cross-section vol.150, 2016, https://doi.org/10.1016/j.proeng.2016.07.186
- Behaviour and design of hollow and concrete-filled spiral welded steel tube columns subjected to axial compression vol.128, 2017, https://doi.org/10.1016/j.jcsr.2016.08.023
- Strength, stiffness and ductility of concrete-filled steel columns under axial compression vol.135, 2017, https://doi.org/10.1016/j.engstruct.2016.12.049
- Behavior of steel-reinforced concrete-filled square steel tubular stub columns under axial loading vol.119, 2017, https://doi.org/10.1016/j.tws.2017.07.021
- Statistical calibration of safety factors for flexural stiffness of composite columns vol.20, pp.1, 2016, https://doi.org/10.12989/scs.2016.20.1.127
- Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel vol.125, 2016, https://doi.org/10.1016/j.conbuildmat.2016.08.057
- Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.921
- Confinement models for high strength short square and rectangular concrete-filled steel tubular columns vol.22, pp.5, 2015, https://doi.org/10.12989/scs.2016.22.5.937
- Anchored blind bolted composite connection to a concrete filled steel tubular column vol.23, pp.1, 2015, https://doi.org/10.12989/scs.2017.23.1.115
- Fire resistance of high strength fiber reinforced concrete filled box columns vol.23, pp.5, 2017, https://doi.org/10.12989/scs.2017.23.5.611
- A review and analysis of circular UHPC filled steel tube columns under axial loading vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.417
- Behavior of concrete-filled round-ended steel tubes under bending vol.25, pp.4, 2015, https://doi.org/10.12989/scs.2017.25.4.457
- Composite action of hollow concrete-filled circular steel tubular stub columns vol.26, pp.6, 2015, https://doi.org/10.12989/scs.2018.26.6.693
- Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading vol.27, pp.2, 2015, https://doi.org/10.12989/scs.2018.27.2.243
- Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures vol.27, pp.4, 2015, https://doi.org/10.12989/scs.2018.27.4.509
- Behavior of polygonal concrete-filled steel tubular stub columns under axial loading vol.28, pp.5, 2015, https://doi.org/10.12989/scs.2018.28.5.573
- Square CFST columns under cyclic load and acid rain attack: Experiments vol.30, pp.2, 2015, https://doi.org/10.12989/scs.2019.30.2.171
- Axial capacity of reactive powder concrete filled steel tube columns with two load conditions vol.31, pp.1, 2015, https://doi.org/10.12989/scs.2019.31.1.013
- Local buckling of rectangular steel tubes filled with concrete vol.31, pp.2, 2015, https://doi.org/10.12989/scs.2019.31.2.201
- Mechanical Performance of Stiffened Concrete Filled Double Skin Steel Tubular Stub Columns under Axial Compression vol.23, pp.5, 2015, https://doi.org/10.1007/s12205-019-1313-6
- Eccentrically loaded SFRC-filled stainless steel columns vol.172, pp.7, 2019, https://doi.org/10.1680/jstbu.17.00165
- Bearing Capacity of Stone-Lightweight Aggregate Concrete-Filled Steel Tubular Stub Column Subjected to Axial Compression vol.23, pp.7, 2015, https://doi.org/10.1007/s12205-019-2287-0
- Effect of Steel Casing on Vertical Bearing Characteristics of Steel Tube-Reinforced Concrete Piles in Loess Area vol.9, pp.14, 2015, https://doi.org/10.3390/app9142874
- Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression vol.12, pp.17, 2015, https://doi.org/10.3390/ma12172716
- A new empirical formula for prediction of the axial compression capacity of CCFT columns vol.33, pp.2, 2019, https://doi.org/10.12989/scs.2019.33.2.181
- Interfacial Bond Behavior of High Strength Concrete Filled Steel Tube after Exposure to Elevated Temperatures and Cooled by Fire Hydrant vol.13, pp.1, 2015, https://doi.org/10.3390/ma13010150
- Theoretical Framework for Creep Effect Analysis of Axially Loaded Short CFST Columns under High Stress Levels vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/5694630
- GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading vol.25, pp.1, 2015, https://doi.org/10.12989/cac.2020.25.1.001
- Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network vol.35, pp.3, 2015, https://doi.org/10.12989/scs.2020.35.3.415
- Design and testing of stainless steel columns filled with steel-fibre-reinforced concrete vol.173, pp.7, 2015, https://doi.org/10.1680/jstbu.18.00165
- Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC vol.75, pp.6, 2015, https://doi.org/10.12989/sem.2020.75.6.643
- Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections vol.38, pp.5, 2021, https://doi.org/10.12989/scs.2021.38.5.497
- Composite action of rectangular CONCRETE‐FILLED steel tube columns under lateral shear force vol.22, pp.2, 2015, https://doi.org/10.1002/suco.202000283
- Behaviour of high strength concrete-filled short steel tubes under sustained loading vol.39, pp.2, 2015, https://doi.org/10.12989/scs.2021.39.2.159
- Performance of fly ash and silica fume self-compacting concrete filled steel tube stub columns under axial compression vol.1144, pp.1, 2015, https://doi.org/10.1088/1757-899x/1144/1/012012