References
- Alexander, M.G., Mackechnie, J.R. and Yam, W. (2007), "Carbonation of concrete bridge structures in three South African localities", Cem. Concr. Compos., 29(10), 750-759. https://doi.org/10.1016/j.cemconcomp.2007.06.005
- Bain, L.J. and Engelhardt, M. (1992), Introduction to Probability and Mathematical Statistics, (2th Edition), Duxbury Press, CA, USA.
- Bouchaala, F., Payan, C., Garnier, V. and Balayssac, J.P. (2011), "Carbonation assessment in concrete by nonlinear ultrasound", Cem. Concr. Res., 41(5), 557-559. https://doi.org/10.1016/j.cemconres.2011.02.006
- Castel, A., Francois, R. and Arliguie, G. (1999), "Effect of loading on carbonation penetration in reinforced concrete elements", Cem. Concr. Res., 29(4), 561-565. https://doi.org/10.1016/S0008-8846(99)00017-4
- Chang, C.F. and Chen, J.W. (2006), "The experimental investigation of concrete carbonation depth", Cem. Concr. Res., 36(9), 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
- Demis, S. and Papadakis, V.G. (2012), "A software-assisted comparative assessment of the effect of cement type on concrete carbonation and chloride ingress", Comput. Concrete, Int. J., 10(4), 391-407. https://doi.org/10.12989/cac.2012.10.4.391
- EN 14630 (2006), Products and systems for the protection and repair of concrete structures-test methods-determination of carbonation depth in hardened concrete by the phenolphthalein method, Committee B/517/8; ISBN 0580496228, Brussels, Belgium.
- Guiglia, M. and Taliano, M. (2013), "Comparison of carbonation depths measured on in-field exposed existing r.c. structures with predictions made using fib-Model Code 2010", Cem. Concr. Compos., 38, 92-108. https://doi.org/10.1016/j.cemconcomp.2013.03.014
- Han, J., Sun, W. and Pan, G. (2012), "In situ dynamic XCT imaging of the microstructure evolution of cement mortar in accelerated carbonation reaction", Mag. Concr. Res., 64(11), 1025-1031. https://doi.org/10.1680/macr.11.00173
- Harrison, T.A., Jones, M.R., Newlands, M.D., Kandasami, S. and Khanna, G. (2012), "Experience of using the prTS 12390-12 accelerated carbonation test to assess the relative performance of concrete", Mag. Concr. Res., 64(8), 737-747. https://doi.org/10.1680/macr.11.00162
- Hollar, D., Rasdorf, W., Liu, M., Hummer, J., Arocho, I. and Hsiang, S. (2013), "Preliminary engineering cost estimation model for bridge projects", J. Constr. Eng. Manag., 139(9), 1259-1267. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000668
- Houst, Y.F. and Wittmann, F.H. (2002), "Depth profiles of carbonates formed during natural carbonation", Cem. Concr. Res., 32(12), 1923-1930. https://doi.org/10.1016/S0008-8846(02)00908-0
- Jia, Y., Aruhan, B. and Yan, P. (2011), "Natural and accelerated carbonation of concrete containing fly ash and GGBS after different initial curing period", Mag. Concr. Res., 64(2), 143-150. https://doi.org/10.1680/macr.10.00134
- Kandasami, S., Harrison, T.A., Jones, M.R. and Khanna, G. (2012), "Benchmarking UK concretes using an accelerated carbonation test", Mag. Concr. Res., 64(8), 697-706. https://doi.org/10.1680/macr.11.00138
- Kurklu, G., Baspinar, M.S. and Ergun, A. (2013), "A comparative study on bond of different grade reinforcing steels in concrete under accelerated corrosion", Steel Compos. Struct., Int. J., 14(3), 229-242. https://doi.org/10.12989/scs.2013.14.3.229
- Lee, H.J., Kim, D.G., Lee, J.H. and Cho, M.S. (2012), "A study for carbonation degree on concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy", World Acad. Sci., Eng. Technol., 62(34), 184-190.
- Loader, C.R. (1992), "Boundary crossing probabilities for locally poisson processes", Ann. Appl. Probab., 2(1), 199-228. https://doi.org/10.1214/aoap/1177005778
- Loo, Y.H., Chin, M.S., Tam, C.T. and Ong, K.C.G. (1994), "A carbonation prediction model for accelerated carbonation testing of concrete", Mag. Concr. Res., 46(168), 191-200. https://doi.org/10.1680/macr.1994.46.168.191
- Lundgren, K. (2002), "Modelling the effect of corrosion on bond in reinforced concrete", Mag. Concr. Res., 54(3), 165-173. https://doi.org/10.1680/macr.2002.54.3.165
- Medeiros, M.H.F., Gobbi, A., Reus, G.C. and Helene, P. (2013), "Reinforced concrete in marine environment: Effect of wetting and drying cycles, height and positioning in relation to the sea shore", Constr. Build. Mater., 44, 452-457. https://doi.org/10.1016/j.conbuildmat.2013.02.078
- Medeiros-Junior, R.A., Lima, M.G., Medeiros, M.H.F. and Real, L.V. (2014), "Investigation of the compressive strength and electrical resistivity of concrete with different cement types", Alconpat, 4(2), 116-132. [In Portuguese] https://doi.org/10.21041/ra.v4i2.21
- NBR 6118 (2014), Projects of Concrete Structures, Brazilian Association of Technical Standards (ABNT); Rio de Janeiro, Brazil.
- Neves, R., Branco, F.A. and Brito, J. (2012), "A method for the use of accelerated carbonation tests in durability design", Constr. Build. Mater., 36, 585-591. https://doi.org/10.1016/j.conbuildmat.2012.06.028
- Pan, Z., Ruan, X. and Chen, A. (2015), "A 2-D numerical research on spatial variability of concrete carbonation depth at meso-scale", Comput. Concrete, Int. J., 15(2), 231-257. https://doi.org/10.12989/cac.2015.15.2.231
- Parrott, L.J. (1992), "Carbonation, moisture and empty pores", Mag. Concr. Res., 4(15), 111-118.
- RILEM CPC-18 (1988), "Measurement of hardened concrete carbonation depth", Mater. Struct., 21(6), 453-455. https://doi.org/10.1007/BF02472327
- Rincon, O.T. and Lima, M.G. (2006), "Durability of concrete structures: DURACON, an iberoamerican project. Preliminary results", Build. Environ., 41(7), 952-962. https://doi.org/10.1016/j.buildenv.2005.04.005
- Song, P.S., Wu, J.C., Hwang, S. and Sheu, B.C. (2005), "Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete", Cem. Concr. Res., 35(2), 393-399. https://doi.org/10.1016/j.cemconres.2004.07.021
- Stevula, L., Madej, J., Kozankova, J. and Madejova, J. (1994), "Hydration products at the blast furnace slag aggregate-cement paste interface", Cem. Concr. Res., 24(3), 413-423. https://doi.org/10.1016/0008-8846(94)90128-7
- Tuutti, K. (1982), "Corrosion of steel in concrete", Ph.D. Thesis; Swedish Cement and Concrete Research Institute, Stockholm, Sweden, 1-469.
- Verdier, J., Carcasses, M. and Ollivier, J.P. (2002), "Modelling of a gas flow measurement: Application to nuclear containment vessels", Cem. Concr. Res., 32(8), 1331-1340. https://doi.org/10.1016/S0008-8846(02)00786-X
- Villain, G., Thiery, M. and Platret, G. (2007), "Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry", Cem. Concr. Res., 37(8), 1182-1192. https://doi.org/10.1016/j.cemconres.2007.04.015
- Zayed, T. and Halpin, D. (2005), "Pile construction productivity assessment", J. Constr. Eng. Manage., 131(6), 705-714. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:6(705)
- Zelterman, D. (1984), "Approximating the distribution of goodness of fit tests for discrete data", Comput. Stat. Data Anal., 2(3), 207-214. https://doi.org/10.1016/0167-9473(84)90012-4
- Zhang, S. and Zhao, B. (2012), "Research on chloride ion diffusivity of concrete subjected to CO2 environment", Comput. Concrete, Int. J., 10(3), 219-229. https://doi.org/10.12989/cac.2012.10.3.219
Cited by
- Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength vol.11, pp.11, 2018, https://doi.org/10.3390/ma11112167
- Self-terminated carbonation model as an useful support for durable concrete structure designing vol.63, pp.1, 2015, https://doi.org/10.12989/sem.2017.63.1.055
- NDT for bridges durability assessment on urban-industrial environment in Brazil vol.36, pp.5, 2015, https://doi.org/10.1108/ijbpa-04-2018-0032
- Prediction of Carbonation Progress in Concrete Containing Calcareous Fly Ash Co-Binder vol.12, pp.17, 2015, https://doi.org/10.3390/ma12172665
- Time-Dependent Reliability-Based Service Life Assessment of RC Bridges Subjected to Carbonation under a Changing Climate vol.12, pp.3, 2015, https://doi.org/10.3390/su12031187
- Resistance of phosphogypsum-based supersulfated cement to carbonation and chloride ingress vol.263, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2020.120640
- Study on the Durability of Road Concrete with Blast Furnace Slag Affected by the Corrosion Initiated by Chloride vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/8851005
- Chloride ingress into concrete under different conditions of temperature and marine zones vol.73, pp.22, 2015, https://doi.org/10.1680/jmacr.19.00451
- Inspection and rehabilitation of the marquee of the Ibirapuera Park in Brazil vol.6, pp.1, 2015, https://doi.org/10.1007/s41024-020-00097-9
- Effectiveness of surface coatings in concrete: chloride penetration and carbonation vol.6, pp.1, 2021, https://doi.org/10.1007/s41024-020-00098-8