DOI QR코드

DOI QR Code

Carbonation depth in 57 years old concrete structures

  • Medeiros-Junior, Ronaldo A. (Department of Civil Construction, Federal University of Parana (UFPR)) ;
  • Lima, Maryangela G. (Department of Civil Engineering, Aeronautics Institute of Technology (ITA)) ;
  • Yazigi, Ricardo (Department of Civil Engineering, Aeronautics Institute of Technology (ITA)) ;
  • Medeiros, Marcelo H.F. (Department of Civil Construction, Federal University of Parana (UFPR))
  • Received : 2014.10.15
  • Accepted : 2015.04.01
  • Published : 2015.10.25

Abstract

Carbonation depth was verified in 40 points of two 57 years old concrete viaducts. Field testing (phenolphthalein spraying) was performed on the structures. Data obtained were statistically analyzed by the Kolmogrov-Smirnov's test, one-way analysis of variance (ANOVA's test), and Fisher's method. The results revealed significant differences between maximum carbonation depths of different elements of the same concrete structure. Significant differences were also found in the carbonation of different concrete structures inserted in the same macroclimate. Microclimatic factors such as temperature and local humidity, sunshine, wind, wetting and drying cycles, among others, may have been responsible by the behavior of carbonation in concrete.

Keywords

References

  1. Alexander, M.G., Mackechnie, J.R. and Yam, W. (2007), "Carbonation of concrete bridge structures in three South African localities", Cem. Concr. Compos., 29(10), 750-759. https://doi.org/10.1016/j.cemconcomp.2007.06.005
  2. Bain, L.J. and Engelhardt, M. (1992), Introduction to Probability and Mathematical Statistics, (2th Edition), Duxbury Press, CA, USA.
  3. Bouchaala, F., Payan, C., Garnier, V. and Balayssac, J.P. (2011), "Carbonation assessment in concrete by nonlinear ultrasound", Cem. Concr. Res., 41(5), 557-559. https://doi.org/10.1016/j.cemconres.2011.02.006
  4. Castel, A., Francois, R. and Arliguie, G. (1999), "Effect of loading on carbonation penetration in reinforced concrete elements", Cem. Concr. Res., 29(4), 561-565. https://doi.org/10.1016/S0008-8846(99)00017-4
  5. Chang, C.F. and Chen, J.W. (2006), "The experimental investigation of concrete carbonation depth", Cem. Concr. Res., 36(9), 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
  6. Demis, S. and Papadakis, V.G. (2012), "A software-assisted comparative assessment of the effect of cement type on concrete carbonation and chloride ingress", Comput. Concrete, Int. J., 10(4), 391-407. https://doi.org/10.12989/cac.2012.10.4.391
  7. EN 14630 (2006), Products and systems for the protection and repair of concrete structures-test methods-determination of carbonation depth in hardened concrete by the phenolphthalein method, Committee B/517/8; ISBN 0580496228, Brussels, Belgium.
  8. Guiglia, M. and Taliano, M. (2013), "Comparison of carbonation depths measured on in-field exposed existing r.c. structures with predictions made using fib-Model Code 2010", Cem. Concr. Compos., 38, 92-108. https://doi.org/10.1016/j.cemconcomp.2013.03.014
  9. Han, J., Sun, W. and Pan, G. (2012), "In situ dynamic XCT imaging of the microstructure evolution of cement mortar in accelerated carbonation reaction", Mag. Concr. Res., 64(11), 1025-1031. https://doi.org/10.1680/macr.11.00173
  10. Harrison, T.A., Jones, M.R., Newlands, M.D., Kandasami, S. and Khanna, G. (2012), "Experience of using the prTS 12390-12 accelerated carbonation test to assess the relative performance of concrete", Mag. Concr. Res., 64(8), 737-747. https://doi.org/10.1680/macr.11.00162
  11. Hollar, D., Rasdorf, W., Liu, M., Hummer, J., Arocho, I. and Hsiang, S. (2013), "Preliminary engineering cost estimation model for bridge projects", J. Constr. Eng. Manag., 139(9), 1259-1267. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000668
  12. Houst, Y.F. and Wittmann, F.H. (2002), "Depth profiles of carbonates formed during natural carbonation", Cem. Concr. Res., 32(12), 1923-1930. https://doi.org/10.1016/S0008-8846(02)00908-0
  13. Jia, Y., Aruhan, B. and Yan, P. (2011), "Natural and accelerated carbonation of concrete containing fly ash and GGBS after different initial curing period", Mag. Concr. Res., 64(2), 143-150. https://doi.org/10.1680/macr.10.00134
  14. Kandasami, S., Harrison, T.A., Jones, M.R. and Khanna, G. (2012), "Benchmarking UK concretes using an accelerated carbonation test", Mag. Concr. Res., 64(8), 697-706. https://doi.org/10.1680/macr.11.00138
  15. Kurklu, G., Baspinar, M.S. and Ergun, A. (2013), "A comparative study on bond of different grade reinforcing steels in concrete under accelerated corrosion", Steel Compos. Struct., Int. J., 14(3), 229-242. https://doi.org/10.12989/scs.2013.14.3.229
  16. Lee, H.J., Kim, D.G., Lee, J.H. and Cho, M.S. (2012), "A study for carbonation degree on concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy", World Acad. Sci., Eng. Technol., 62(34), 184-190.
  17. Loader, C.R. (1992), "Boundary crossing probabilities for locally poisson processes", Ann. Appl. Probab., 2(1), 199-228. https://doi.org/10.1214/aoap/1177005778
  18. Loo, Y.H., Chin, M.S., Tam, C.T. and Ong, K.C.G. (1994), "A carbonation prediction model for accelerated carbonation testing of concrete", Mag. Concr. Res., 46(168), 191-200. https://doi.org/10.1680/macr.1994.46.168.191
  19. Lundgren, K. (2002), "Modelling the effect of corrosion on bond in reinforced concrete", Mag. Concr. Res., 54(3), 165-173. https://doi.org/10.1680/macr.2002.54.3.165
  20. Medeiros, M.H.F., Gobbi, A., Reus, G.C. and Helene, P. (2013), "Reinforced concrete in marine environment: Effect of wetting and drying cycles, height and positioning in relation to the sea shore", Constr. Build. Mater., 44, 452-457. https://doi.org/10.1016/j.conbuildmat.2013.02.078
  21. Medeiros-Junior, R.A., Lima, M.G., Medeiros, M.H.F. and Real, L.V. (2014), "Investigation of the compressive strength and electrical resistivity of concrete with different cement types", Alconpat, 4(2), 116-132. [In Portuguese] https://doi.org/10.21041/ra.v4i2.21
  22. NBR 6118 (2014), Projects of Concrete Structures, Brazilian Association of Technical Standards (ABNT); Rio de Janeiro, Brazil.
  23. Neves, R., Branco, F.A. and Brito, J. (2012), "A method for the use of accelerated carbonation tests in durability design", Constr. Build. Mater., 36, 585-591. https://doi.org/10.1016/j.conbuildmat.2012.06.028
  24. Pan, Z., Ruan, X. and Chen, A. (2015), "A 2-D numerical research on spatial variability of concrete carbonation depth at meso-scale", Comput. Concrete, Int. J., 15(2), 231-257. https://doi.org/10.12989/cac.2015.15.2.231
  25. Parrott, L.J. (1992), "Carbonation, moisture and empty pores", Mag. Concr. Res., 4(15), 111-118.
  26. RILEM CPC-18 (1988), "Measurement of hardened concrete carbonation depth", Mater. Struct., 21(6), 453-455. https://doi.org/10.1007/BF02472327
  27. Rincon, O.T. and Lima, M.G. (2006), "Durability of concrete structures: DURACON, an iberoamerican project. Preliminary results", Build. Environ., 41(7), 952-962. https://doi.org/10.1016/j.buildenv.2005.04.005
  28. Song, P.S., Wu, J.C., Hwang, S. and Sheu, B.C. (2005), "Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete", Cem. Concr. Res., 35(2), 393-399. https://doi.org/10.1016/j.cemconres.2004.07.021
  29. Stevula, L., Madej, J., Kozankova, J. and Madejova, J. (1994), "Hydration products at the blast furnace slag aggregate-cement paste interface", Cem. Concr. Res., 24(3), 413-423. https://doi.org/10.1016/0008-8846(94)90128-7
  30. Tuutti, K. (1982), "Corrosion of steel in concrete", Ph.D. Thesis; Swedish Cement and Concrete Research Institute, Stockholm, Sweden, 1-469.
  31. Verdier, J., Carcasses, M. and Ollivier, J.P. (2002), "Modelling of a gas flow measurement: Application to nuclear containment vessels", Cem. Concr. Res., 32(8), 1331-1340. https://doi.org/10.1016/S0008-8846(02)00786-X
  32. Villain, G., Thiery, M. and Platret, G. (2007), "Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry", Cem. Concr. Res., 37(8), 1182-1192. https://doi.org/10.1016/j.cemconres.2007.04.015
  33. Zayed, T. and Halpin, D. (2005), "Pile construction productivity assessment", J. Constr. Eng. Manage., 131(6), 705-714. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:6(705)
  34. Zelterman, D. (1984), "Approximating the distribution of goodness of fit tests for discrete data", Comput. Stat. Data Anal., 2(3), 207-214. https://doi.org/10.1016/0167-9473(84)90012-4
  35. Zhang, S. and Zhao, B. (2012), "Research on chloride ion diffusivity of concrete subjected to CO2 environment", Comput. Concrete, Int. J., 10(3), 219-229. https://doi.org/10.12989/cac.2012.10.3.219

Cited by

  1. Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength vol.11, pp.11, 2018, https://doi.org/10.3390/ma11112167
  2. Self-terminated carbonation model as an useful support for durable concrete structure designing vol.63, pp.1, 2015, https://doi.org/10.12989/sem.2017.63.1.055
  3. NDT for bridges durability assessment on urban-industrial environment in Brazil vol.36, pp.5, 2015, https://doi.org/10.1108/ijbpa-04-2018-0032
  4. Prediction of Carbonation Progress in Concrete Containing Calcareous Fly Ash Co-Binder vol.12, pp.17, 2015, https://doi.org/10.3390/ma12172665
  5. Time-Dependent Reliability-Based Service Life Assessment of RC Bridges Subjected to Carbonation under a Changing Climate vol.12, pp.3, 2015, https://doi.org/10.3390/su12031187
  6. Resistance of phosphogypsum-based supersulfated cement to carbonation and chloride ingress vol.263, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2020.120640
  7. Study on the Durability of Road Concrete with Blast Furnace Slag Affected by the Corrosion Initiated by Chloride vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/8851005
  8. Chloride ingress into concrete under different conditions of temperature and marine zones vol.73, pp.22, 2015, https://doi.org/10.1680/jmacr.19.00451
  9. Inspection and rehabilitation of the marquee of the Ibirapuera Park in Brazil vol.6, pp.1, 2015, https://doi.org/10.1007/s41024-020-00097-9
  10. Effectiveness of surface coatings in concrete: chloride penetration and carbonation vol.6, pp.1, 2021, https://doi.org/10.1007/s41024-020-00098-8