DOI QR코드

DOI QR Code

Proteomic Responses of Diploid and Tetraploid Roots in Platycodon grandiflorum

2배체와 4배체 도라지의 단백질 발현양상 비교 분석

  • 김혜림 (충북대학교 식물자원학과) ;
  • 권수정 (우송정보대학 식품영양조리학부) ;
  • ;
  • 조성우 (농촌진흥청 국립식량과학원) ;
  • 김학현 (우송정보대학 식품영양조리학부) ;
  • 문영자 (우송정보대학 식품영양조리학부) ;
  • 부희옥 ((주)웰파이토) ;
  • 우선희 (충북대학교 식물자원학과)
  • Received : 2015.09.04
  • Accepted : 2015.09.14
  • Published : 2015.09.30

Abstract

The roots of Platycodon grandiflorum species either dried or fresh, are used as an ingredient in salads and traditional cuisine in Korea. To interpret the root proteins, a systematical and targeting analysis were carried out from diploid and tetraploid roots. Two dimensional gels stained with CBB, a total of 39 differential expressed proteins were identified from the diploid root under in vivo condition using image analysis by Progenesis Same Spot software. Out of total differential expressed spots, 39 differential expressed protein spots (${\geq}\;1.5$-fold) were analyzed using LTQ-FTICR mass spectrometry. Except two proteins, the rest of the identified proteins were confirmed as down-regulated such as Isocitrate dehydrogenase, Proteasome subunit alpha type-2-B. However, the most of the identified proteins from the explants were mainly associated with the oxidoreductase activity, nucleic acid binding, transferase activity and catalytic activity. The exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.

본 연구는 2배체와 4배체 도라지 단백질 발현지도 제작과 도라지의 생리활성에 관여하는 메카니즘을 분자적 수준에서 해석하기 위한 기초자료를 얻고자 실시하였다. 2배체 및 4배체 도라지의 단백질의 발현 양상은 배수성에 따른 특이성은 관찰 할 수 없었으며, 모두 분자량 15~100 kDa 크기, pH 4.0~8.0의 범위에 분포하는 것으로 나타났다. 동정된 39개의 단백질 중 2배체에 비해 4배체에서 2개의 단백질이 up-regulated 되었고, 37개의 단백질이 down-regulated 되었다. 단백질을 기능별로 분류한 결과, 산화환원효소의 활성(oxidoreductase activity)기능을 갖는 단백질이 23.7%의 비율로 가장 많았고 다음은 nucleotide binding 기능의 단백질이 15.8%의 비율로 높았다.

Keywords

References

  1. Fritsche, O. and W. Junge. 1996. Chloroplast ATP synthase: the clutch between proton flow and ATP synthesis is at the interface of subunit and $CF^1$. Biochimica Biophysica Acta 1274 : 94-100. https://doi.org/10.1016/0005-2728(96)00004-7
  2. Goward, C. R. and D. J. Nicholls. 1994. Malate dehydrogenase: A model for structure, evolution, and catalysis. Protein Sci. 3 : 1883-1888. https://doi.org/10.1002/pro.5560031027
  3. Grossman, A. R., D. Bhaya, K. EApt, and D. M. Kehoe. 1995. Light-Harvesting Complexes in Oxygenic Photosynthesis: Diversity, Control, and Evolution. Annual Review of Genetics 29 : 231-288. https://doi.org/10.1146/annurev.ge.29.120195.001311
  4. Kamal, A. H., K. Cho, S. Komatsu, N. Uozumi, J. S. Choi, and S. H. Woo. 2012. Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome. Mol Biol Rep 39 : 5069-83. https://doi.org/10.1007/s11033-011-1302-4
  5. Kenmochi, N., L. K. Ashworth, G. Lennon, S. Higa, and T. Tanaka. 1998. High-Resolution Mapping of Ribosomal Protein Genes to Human Chromosome 19. DNA Res. 5 : 229-233. https://doi.org/10.1093/dnares/5.4.229
  6. Kim, K. H., A. H. M Kamal, K. H. Shin, J. S. Choi, H. Y. Heo, and S. H. Woo. 2010. Large scale proteomic investigation in wild relatives (A, B and D genomes) of wheat. Acta Biochimica et Biophysica Sinica 42 : 709-716. https://doi.org/10.1093/abbs/gmq079
  7. Komatsu, S., Y. Nanjo, and M. Nishimura. 2013. Proteomic analysis of the flooding tolerance mechanism in mutant soybean. Journal of Proteomics 79 : 231-250. https://doi.org/10.1016/j.jprot.2012.12.023
  8. Lee, C. P. 2009. Dynamics of the plant mitochondrial proteome : Towards the understanding of metabolic networks, Ph.D. Thesis, The University of Western Australia.
  9. Link, A. J., J. Eng, D. M. Schieltz, E. Carmack, G. J. Mize, D. R. Morris, B. M. Garvik, J. R 3rd Yates. 1999. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17(7) : 676-682. https://doi.org/10.1038/10890
  10. Meunier, B., E. Dumas, I. Piec, D. Bechet, M. Hebraud, and J. F. Hocquette. 2007. Assessment of hierarchical clustering methodologies for proteomic data mining. J. Proteome Res. 6(1) : 358-366. https://doi.org/10.1021/pr060343h
  11. Millar, A. H., J. L. Heazlewood, B. K. Kristensen, H. P. Braun, and I. M. Moller. 2005. The plant mitochondrial proteome, TRENDS in Plant Science, 10 (1) : 36-43. https://doi.org/10.1016/j.tplants.2004.12.002
  12. Olsen, J. V. and M. Mann. 2006. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation, Proceedings of the National Academy of Sciences, 101(37) : 13417-13422.
  13. Schweizer, P., W. Hunziker, and E. Mosinger. 1989. cDNA cloning, in vitro transcription and partial sequence analysis of mRNAs from winter wheat (Triticum aestivum L.) with induced resistance to Erysiphe graminins f. sp. tvitici. Plant Mol. Biol. 12 : 643-654. https://doi.org/10.1007/BF00044155
  14. Washburn, M. P., D. Wolters, J. R. 3rd Yates. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19(3) : 242-247. https://doi.org/10.1038/85686
  15. Wolters, D. A., M. P. Washburn, J. R. Yates JR., 3rd 2001. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 73 : 5683-5690. https://doi.org/10.1021/ac010617e
  16. Woo, S. H., H. S. Kim, B. H. Song, C. W. Lee, Y. M. Park, S. K. Jong, and Y. G. Cho. 2003. Rice proteomics: a functional analysis of the rice genome and applications. Korean J. Plant Biotechnol. 30(3) : 261-191.