Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- C. Adams, The Knot Book, W. H. Freeman and Company, 1994.
- E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101-126. https://doi.org/10.2307/1969218
- W. Gibson and M. Ishikawa, Links and Gordian numbers associated with generic immersions of intervals, Topology Appl. 123 (2002), no. 3, 609-636. https://doi.org/10.1016/S0166-8641(01)00224-3
- C. McA. Gordon, R. A. Litherland, and K. Murasugi, Signatures of covering links, Canad. J. Math. 33 (1981), no. 2, 381-394. https://doi.org/10.4153/CJM-1981-032-3
- A. Kawauchi, Distance between links by zero-linking twists, Kobe J. Math. 13 (1996), no. 2, 183-190.
- P. Kronheimer and T. Mrowka, Gauge theory for embedded surfaces I, Topology 32 (1993), no. 4, 773-826. https://doi.org/10.1016/0040-9383(93)90051-V
- P. Kronheimer and T. Mrowka, Gauge theory for embedded surfaces II, Topology 34 (1995), no. 1, 37-97. https://doi.org/10.1016/0040-9383(94)E0003-3
- V. O. Manturov, A combinatorial representation of links by quasitoric braids, European J. Combin. 23 (2002), no. 2, 207-212. https://doi.org/10.1006/eujc.2001.0546
- K. Murasugi and B. Kurpita, A Study of Braids, Kluwer Academic Publishers, 1999.
- Y. Ohyama, On the Minimal Crossing Number and the Braid Index of Links, Canad. J. Math. 45 (1993), no. 1, 117-131. https://doi.org/10.4153/CJM-1993-007-x
- K. Taniyama, Unknotting numbers of diagrams of a given nontrivial knot are unbounded, J. Knot Theory Ramications 18 (2009), no. 8, 1049-1063. https://doi.org/10.1142/S0218216509007361