References
- G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976; Nauka, Moscow, 1980.
- I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
- G. Fikera, Existence Theorems in Elasticity, Springer-Verlag, Berlin, 1976; Nauka, Moscow, 1980.
- S. Fucik and A. Kufner, Nonlinear Differential Equations, Mir, Moscow, 1988.
- I. Hlavacek, Ya. Haslinger, I. Nechas, and Ya. Lovishek, Numerical Solution of Variational Inequalities, Springer-Verlag, Berlin, 1988; Mir, Moscow, 1986.
- L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon, Oxford, 1982.
- A. M. Khludnev, Elasticity Problems in Non-Smooth Domains, Fizmatlit, Moscow, 2010.
- N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
- W. Maclean, Strongly Elliptic Systems and Boundary Integrals Equations, University Press, Cambridge, 2000.
- R. V. Namm and S. A. Sachkov, Solving the quasi-variational Signorini inequality by the method of successive approximations, Zh. Vychisl. Mat. Mat. Fiz. 49 (2009), no. 5, 805-814; translation in Comp. Math. and Math. Phys. 49 (2009), no. 5, 776-785.
- R. V. Namm and E. M. Vikhtenko, Modified Lagrangian functional for solving the sig- norini problem with friction, Advances in Mechanics Research, Nova Science Publishers, New-York 1 (2011), 435-446.
- R. V. Namm, G. Woo, S.-S. Xie, and S. Yi, Solution of semicoercive signorini problem based on a duality scheme with modified lagrangian functional, J. Korean Math. Soc. 49 (2012), no. 4, 843-854. https://doi.org/10.4134/JKMS.2012.49.4.843
- B. T. Polyak, Introduction to Optimization, Nauka, Moscow, 1980.
- E. M. Vikhtenko and R. V. Namm, A duality scheme for solving the semi-coercive Signorini problem with friction, Zh. Vychisl. Mat. Mat. Fiz. 47 (2007), no. 12, 2023-2036; translation in Comput. Math. Math. Phys. 47 (2007), no. 12, 1938-1951.
- E. M. Vikhtenko, G. Woo, and R. V. Namm, Sensitivity functionals in contact problems of elasticity theory, Comput. Math. Math. Phys. 54 (2014), no. 7, 1190-1200. https://doi.org/10.1134/S0965542514070112
- G. Woo, R. V. Namm, and S. A. Sachkov, An iterative method of search for a saddle point for a semicoercive signorini problem based on a modified lagrangian functional, Zh. Vychisl. Mat. Mat. Fiz. 46 (2006), no. 1, 26-36; translation in Comp. Math. and Math. Phys. 46 (2006), no. 1, 23-33.
Cited by
- Relation study on the measuring space and accuracy level of the multi-node rotary laser positioning system vol.130, 2017, https://doi.org/10.1016/j.oceaneng.2016.11.063