References
- H. Bass, L. Carbone, A. Lubotzky, G. Rosenberg, and J. Tits, Tree Lattices, Birkhauser, 2001.
- J. Cassaigne, Constructing innite words of intermediate complexity, Developments in language theory, 173-184, Lecture Notes in Comput. Sci., 2450, Springer, Berlin, 2003.
- E. Coven and G. Hedlund, Sequences with Minimal Block Growth, Math. Systems Theory 7 (1973), 138-153. https://doi.org/10.1007/BF01762232
- X. Droubay and G. Pirillo, Palindromes and Sturmian words, Theoret. Comput. Sci. 223 (1999), no. 1-2, 73-85. https://doi.org/10.1016/S0304-3975(97)00188-6
- D. Kim and S. Lim, Subword complexity and Sturmian colorings of regular trees, Ergodic Theory Dynam. Systems 35 (2015), no. 2, 461-481. https://doi.org/10.1017/etds.2013.50
- H. Kim and S. Park, Toeplitz sequences of intermediate complexity, J. Korean Math. Soc. 48 (2011), no. 2, 383-395. https://doi.org/10.4134/JKMS.2011.48.2.383
- M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002.
- G. Rote, Sequences with Subword complexity 2n, J. Number Theory 46 (1994), no. 2, 196-213. https://doi.org/10.1006/jnth.1994.1012
- J. Serre, Trees, Springer, 1980.