References
- Zs. Tokei, H. Viefhaus, and H.J. Grabke, "Initial stages of oxidation of a 9CrMoV-steel: role of segregation and martensite laths", Applied Surface Science Vol. 165, pp.23-33, 2000 https://doi.org/10.1016/S0169-4332(00)00285-3
-
H. Saari, C.Park, R. Petrusenko, B. Maybee, and K. Zanganeh, "Corrosion testing of high temperature materials in supercritical carbon dioxide", The 4th International Symposium - Supercritical
$CO_2$ Power Cycles, Pittsburgh, Pennsylvania, 2014 - L.F. He, P. Roman, B. Leng, K. Sridharan, M. Anderson, and T.R. Allen, "Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide", Corrosion Science Vol. 82, pp.67-76, 2014 https://doi.org/10.1016/j.corsci.2013.12.023
- R. Peraldi and B.A. Pint, "Effect of Cr and Ni contents on the oxidation behavior of ferritic and austenitic model alloys in air with water vapor", Oxidation of Metals, Vol. 61, pp.463-483, June 2004 https://doi.org/10.1023/B:OXID.0000032334.75463.da
-
F. Rouillard, F. Charton, and G. Moine, "Corrosion behavior of different metallic materials in supercritical
$CO_2$ at$550^{\circ}C$ and 250 bars", Proceedings of$SCCO_2$ Power Cycle Symposium 2009, NY, 2009 - L. Tan, M. Anderson, D. Taylor, T.R. Allen, "Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide", Corrosion Science Vol. 53, pp.3273-3280, 2011 https://doi.org/10.1016/j.corsci.2011.06.002