DOI QR코드

DOI QR Code

Growth of Spinel CoMn2O4 Thin Films and Post-growth Annealing Effects on Their Physical Properties

CoMn2O4 스피넬 박막의 합성과 후열처리가 박막의 물리적 특성에 미치는 영향

  • Kim, D.R. (Department of Physics, Chungnam National University) ;
  • Kim, J.K. (Department of Physics, Chungnam National University) ;
  • Yoon, S.W. (Department of Physics, Chungnam National University) ;
  • Song, J.H. (Department of Physics, Chungnam National University)
  • Received : 2015.10.02
  • Accepted : 2015.10.20
  • Published : 2015.10.31

Abstract

We grew spinel structured $CoMn_2O_4$ thin films and have studied post-growth annealing effects on their physical properties. After post-growth annealing at $700^{\circ}C$ that is lower than the growth temperature ($720^{\circ}C$), crystal structure became cleared accompanying a change of surface structure. In the temperature dependences of magnetization, phase transitions were observed at ~100 K for both before and after post-growth treated samples which were not observed for the bulk. For both samples, ferromagnetic behaviors were observed above 100 K while it turned to ferrimagnetism at low temperature below 100 K. In particular, the ferrimagnetic behavior became strong after the post-growth treatment. These results indicate that the post-growth annealing process plays an important role in determining the physical properties of spinel $CoMn_2O_4$ thin film.

스피넬 결정구조를 지니는 $CoMn_2O_4$ 박막을 증착하였으며 이들 박막의 물리적 특성을 후열처리 이전과 이후로 비교 조사하였다. 증착온도인 $720^{\circ}C$보다 낮은 $700^{\circ}C$에서의 후열처리 과정 이후, 열처리 이전의 불분명했던 tetragonal 결정구조가 분명하여졌으며 이는 곧 표면상태의 변화로도 관측되었다. 자성특성의 경우 약 100 K에서 다결정 형태의 벌크에서는 측정할 수 없었던 상전이가 관측되었다. 상전이온도 이상의 온도에서는 전형적인 강자성 특성을 보이는 반면 상전이온도 이하에서는 페리자성 특성을 보였다. 특히 열처리 이후에는 페리자성 특성은 매우 뚜렷하여졌다. 이와 같은 결과는 후열처리과정이 $CoMn_2O_4$ 박막의 물리적 특성을 결정짓는데 필수적임을 의미한다.

Keywords

References

  1. C. N. R. Rao and B. Raveau, Transition Metal Oxides 2nd edition, Wiley-VCH, Weinheim (1995).
  2. P. A. Cox, Transition Metal Oxides; An Introduction to Their Electronic Structure and Properties, Oxford University Press (1992).
  3. J. G. Bednorz and K. A. Muller, J. Phys. B 64, 189 (1986).
  4. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908
  5. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chenet, Science 264, 413 (1994). https://doi.org/10.1126/science.264.5157.413
  6. S. Mori, C. H. Chen, and S.-W. Cheong, Nature 392, 473 (1998). https://doi.org/10.1038/33105
  7. M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399, 560 (1999). https://doi.org/10.1038/21142
  8. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature 392, 794 (1998). https://doi.org/10.1038/33883
  9. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature 429, 392 (2004). https://doi.org/10.1038/nature02572
  10. S. Krupica and P. Novak, Oxides Spinel in Ferromagnetic Materials, Amsterdam: North-Holland Vol. 3, chapter 4 (1982).
  11. R. E. Vandenberghe and E. De Grave, Mossbauer Spectroscopy Applied to Inorganic Chemistry, (New York: Plenum) Vol. 3, chapter 3 (1986).
  12. M. Han, C. R. Vestal, and Z. J. Zhang, J. Phys. Chem. B 108, 583 (2004). https://doi.org/10.1021/jp035966m
  13. S. H. Kang, I. W. Kim, Y. H. Jeong, and T. Y. Koo, J. Cryst. Growth 344, 65 (2012). https://doi.org/10.1016/j.jcrysgro.2012.01.053
  14. E. Vila, R. M. Rojas, J. L. M. Vidales, and O. Garcia-Martinez, Chem. Mater. 8, 1078 (1996). https://doi.org/10.1021/cm950503h
  15. S. T. Kshirsagar and A. B. Biswas, J. Chem. Phys. Solids 28, 1493 (1967). https://doi.org/10.1016/0022-3697(67)90278-8
  16. D. G. Wichham and W. J. Croft, J. Chem. Phys. Solids. 7, 351 (1958). https://doi.org/10.1016/0022-3697(58)90285-3