DOI QR코드

DOI QR Code

CsCl 구조를 가지는 CoX(X = Ti, V, Nb) (001) 표면의 자성에 대한 제일원리 연구

A First-principles Study on the Surface Magnetism of the CsCl Structured CoX (X = Ti, V, Nb) (001) Surface

  • 김동철 (한라대학교 전기전자공학과)
  • Kim, Dong-Chul (Department of Electrical and Electronics Engineering, Halla University)
  • 투고 : 2015.09.15
  • 심사 : 2015.09.30
  • 발행 : 2015.10.31

초록

CsCl 구조를 가지는 CoX(X = Ti, V, Nb) 이원화합물에서 (001) 표면계의 전자구조를 제일원리 전자구조 계산방법을 이용하여 계산하고 표면자성을 연구하였다. Co 원자로 끝나는 CoTi(001)계에서 표면 Co 원자의 자기모멘트는 가운데 층 Co 원자에 비해 상당히 증가한 $1.19{\mu}_B$였다. V 원자로 끝나는 CoV(001) 표면계에서 표면 V 원자의 자기모멘트는 가운데 층의 2.5배로서 $1.64{\mu}_B$이고, Co 원자로 끝나는 계에서 표면 Co 원자의 자기모멘트는 $1.34{\mu}_B$로 덩치 Co 원자에 비해 다소 감소하였다. CoNb(001)계에서 Nb 원자로 끝나는 계의 경우, 표면 Nb 원자의 자기모멘트는 가운데 층 Nb 원자에 비해 다소 감소한 $0.26{\mu}_B$였으며, Co 원자로 끝나는 표면계의 경우 자성이 사라졌다.

The surface magnetism of the CsCl structured Co binary compounds, CoX (X = Ti, V, Nb) (001) surface was studied with the calculated electronic structure data obtained by the full-potential linearized augmented plane-wave (FLAPW) method. The magnetic moment of the surface Co atom of the Co-terminated CoTi(001) system was $1.19{\mu}_B$, which is enhanced compared with that of the Co atom in the center layer. The magnetic moment of the surface V atom in the V terminated the CoV(001) system was $1.64{\mu}_B$, which is more than twice of the center layered V atom. The magnetic moment of surface Co atom in the Co terminated CoV(001) system has the value of $1.34{\mu}_B$, little bit smaller than the bulk value. The magnetism was disappeared in the Co terminated CoNb(001) system, and the magnetic moment of the surface Nb atom in the Nb terminated CoNb(001) system was $0.26{\mu}_B$ which is little bit decreased compared to the center layer value.

키워드

참고문헌

  1. N. Motta, M. de Crescenzi, and A. Balzarotti, Phys. Rev. B 27, 4712 (1983). https://doi.org/10.1103/PhysRevB.27.4712
  2. J. H. Weaver and D. T. Peterson, Phys. Rev. B 22, 3624 (1980). https://doi.org/10.1103/PhysRevB.22.3624
  3. R. S. Allgaier, J. Phys. Chem. Sol. 28, 1293 (1967). https://doi.org/10.1016/0022-3697(67)90073-X
  4. E. A. Starke, C. H. Cheng, and P. A. Beck, Phys. Rev. 126, 1746 (1962). https://doi.org/10.1103/PhysRev.126.1746
  5. D. A. Papaconstantopoulos, Phys. Rev. B 11, 4801 (1975). https://doi.org/10.1103/PhysRevB.11.4801
  6. D. A. Papaconstantopoulos and D. J. Negal, Int. J. Quantum Chem. S 5, 515 (1971).
  7. R. Eibler, J. Redinger, and A. Neckel, J. Phys. F 17, 1533 (1971).
  8. J. Y. Rhee, B. N. Harmon, and D. W. Lynch, Phys. Rev. B 54, 17385 (1996). https://doi.org/10.1103/PhysRevB.54.17385
  9. J. Y. Rhee, B. N. Harmon, and D. W. Lynch, Phys. Rev. B 59, 1878 (1999). https://doi.org/10.1103/PhysRevB.59.1878
  10. G. Canto and R. de Coss, Surf. Sci. 465, 59 (2000). https://doi.org/10.1016/S0039-6028(00)00662-2
  11. Yu M. Kotoreev, A. G. Lipnitskii, E. V. Chulkov, and V. M. Silkin, Surf. Sci. 507-510, 199 (2002). https://doi.org/10.1016/S0039-6028(02)01212-8
  12. S. V. Man'kovsky, A. A. Ostroukhov, V. M. Floka, and V. T. Cherepin, Vacuum 48, 245 (1997). https://doi.org/10.1016/S0042-207X(96)00265-5
  13. A. Kellou, Z. Nabi, A. Tadjer, N. Amrane, N. Fenineche, and H. Aourag, Phys. Stat. Sol. (b) 239, 389 (2003). https://doi.org/10.1002/pssb.200301848
  14. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
  15. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  16. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  18. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977). https://doi.org/10.1088/0022-3719/10/16/019