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1. Introduction and preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0, (1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-space.
We assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on
R+ × Rn and f(t, 0) = 0. Also, we consider the nonlinear perturbed functional
differential systems of (1)

y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds+ h(t, y(t), T y(t)), y(t0) = y0, (2)

where g ∈ C(R+×Rn,Rn), h ∈ C(R+×Rn×Rn,Rn) , g(t, 0) = 0, h(t, 0, 0) = 0,
and T : C(R+,Rn) → C(R+,Rn) is a continuous operator .

For x ∈ Rn, let |x| = (
∑n

j=1 x
2
j )

1/2. For an n× n matrix A, define the norm

|A| of A by |A| = sup|x|≤1 |Ax|.
Let x(t, t0, x0) denote the unique solution of (1) with x(t0, t0, x0) = x0, exist-

ing on [t0,∞). Then we can consider the associated variational systems around
the zero solution of (1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0 (3)
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and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (4)

The fundamental matrix Φ(t, t0, x0) of (4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (3).
We recall some notions of h-stability [15].

Definition 1.1. The system (1) (the zero solution x = 0 of (1)) is called an
h-system if there exist a constant c ≥ 1, and a positive continuous function h on
R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t) ).

Definition 1.2. The system (1) (the zero solution x = 0 of (1)) is called
h-stable (hS) if there exists δ > 0 such that (1) is an h-system for |x0| ≤ δ and
h is bounded.

Integral inequalities play a vital role in the study of boundedness and other
qualitative properties of solutions of differential equations. In particular, Bi-
hari’s integral inequality continues to be an effective tool to study sophisticated
problems such as stability, boundedness, and uniqueness of solutions.

The notion of h-stability (hS) was introduced by Pinto [14, 15] with the
intention of obtaining results about stability for a weakly stable system (at
least, weaker than those given exponential asymptotic stability) under some
perturbations. That is, Pinto extended the study of exponential asymptotic
stability to a variety of reasonable systems called h-systems[15]. Choi and Koo
[2], Choi and Ryu [3], and Choi et al. [4] investigated h-stability and bounds of
solutions for the perturbed functional differential systems. Also, Goo [6, 7, 8,
9] and Goo et al. [10] studied h-stability and boundedness of solutions for the
perturbed functional differential systems.

Let M denote the set of all n × n continuous matrices A(t) defined on R+

and N be the subset of M consisting of those nonsingular matrices S(t) that
are of class C1 with the property that S(t) and S−1(t) are bounded. The notion
of t∞-similarity in M was introduced by Conti [5].

Definition 1.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if
there exists an n× n matrix F (t) absolutely integrable over R+, i.e.,∫ ∞

0

|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t) (5)
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for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all n × n
continuous matrices on R+, and it preserves some stability concepts [5, 11].

In this paper, we investigate bounds for solutions of the nonlinear differential
systems using the notion of t∞-similarity.

We give some related properties that we need in the sequal.

Lemma 1.1 ([15]). The linear system

x′ = A(t)x, x(t0) = x0, (6)

where A(t) is an n×n continuous matrix, is an h-system (respectively h-stable) if
and only if there exist c ≥ 1 and a positive and continuous (respectively bounded)
function h defined on R+ such that

|ϕ(t, t0)| ≤ c h(t)h(t0)
−1 (7)

for t ≥ t0 ≥ 0, where ϕ(t, t0) is a fundamental matrix of (6).

We need Alekseev formula to compare between the solutions of (1) and the
solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0, (8)

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the
solution of (8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of con-
stants formula due to Alekseev [1].

Lemma 1.2. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 1.3 ([3]). If the zero solution of (1) is hS, then the zero solution of
(3) is hS.

Theorem 1.4 ([4]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for
t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (3) is
hS, then the solution z = 0 of (4) is hS.

Lemma 1.5. (Bihari− type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,
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where W (u) =
∫ u

u0

ds
w(s) , W

−1(u) is the inverse of W (u) and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 1.6 ([2, 7]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)

∫ s

t0

λ3(τ)u(τ)dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds
]
, t0 ≤ t < b1,

where W and W−1 are the same functions as in Lemma 1.5, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}
.

Lemma 1.7 ([6]). Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)

∫ s

t0

λ3(τ)u(τ)dτds+

∫ t

t0

λ4(s)

∫ s

t0

λ5(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ + λ4(s)

∫ s

t0

λ5(τ)dτ)ds
]
, t0 ≤ t < b1

where W and W−1 are the same functions as in Lemma 1.5, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ + λ4(s)

∫ s

t0

λ5(τ)dτ)ds ∈ domW−1
}
.

2. Main results

In this section, we investigate boundedness for solutions of the nonlinear per-
turbed functional differential systems via t∞-similarity.

Lemma 2.1. Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)u(τ)dτds, 0 ≤ t0 ≤ t.

(9)

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ + λ5(s)

∫ s

t0

λ6(τ)dτ)ds
]
,

(10)
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t0 ≤ t < b1, where W and W−1 are the same functions as in Lemma 1.5, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ)ds ∈ domW−1
}
.

Proof. Define a function v(t) by the right member of (9) . Then

v′(t) = λ1(t)u(t) + λ2(t)w(u(t)) + λ3(t)

∫ t

t0

λ4(s)u(s)ds+ λ5(t)

∫ t

t0

λ6(s)u(s)ds,

which implies

v′(t) ≤
[
λ1(t) + λ2(t) + λ3(t)

∫ t

t0
λ4(s)ds+ λ5(t)

∫ t

t0
λ6(s)ds

]
w(v(t)),

since v and w are nondecreasing, u ≤ w(u) and u(t) ≤ v(t) . Now, by integrating
the above inequality on [t0, t] and v(t0) = c, we have

v(t) ≤ c+

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ + λ5(s)

∫ s

t0

λ6(τ)dτ
)
w(v(s))ds. (11)

Then, by the well-known Bihari-type inequality, (11) yields the estimate (10).
�

Theorem 2.2. Let a, b, c, k, q, u, w ∈ C(R+) and w(u) be nondecreasing in u
such that u ≤ w(u) and 1

vw(u) ≤ w(uv ) for some v > 0. Suppose that fx(t, 0)
is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant
δ > 0, the solution x = 0 of (1) is hS with the increasing function h, and g in
(2) satisfies∫ s

t0

|g(τ, y(τ))|dτ ≤ a(s)|y(s)|+ b(s)

∫ s

t0

k(τ)|y(τ)|dτ, t ≥ t0 ≥ 0, (12)

and

|h(t, y(t), Ty(t))| ≤ c(t)(w(|y(t)|) + |Ty(t)|), |Ty(t)| ≤
∫ t

t0

q(s)|y(s)|ds (13)

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞,
∫∞
t0

k(s)ds < ∞, and∫∞
t0

q(s)ds < ∞. Then, any solution y(t) = y(t, t0, y0) of (2) is bounded on

[t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c)+c2

∫ t

t0

(a(s)+c(s)+b(s)

∫ s

t0

k(τ)dτ+c(s)

∫ s

t0

q(τ)dτ)ds
]
,

t0 ≤ t < b1, where W and W−1 are the same functions as in Lemma 1.5, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ

+c(s)

∫ s

t0

q(τ)dτ)ds ∈ domW−1
}
.
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Proof. Using the nonlinear variation of constants formula of Alekseev [1], any
solution y(t) = y(t, t0, y0) of (2) passing through (t0, y0) is given by

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s))(

∫ s

t0

g(τ, y(τ))dτ + h(s, y(s), T y(s)))ds. (14)

By Theorem 1.3, since the solution x = 0 of (1) is hS, the solution v = 0 of (3)
is hS. Therefore, by Theorem 1.4, the solution z = 0 of (4) is hS. By Lemma 1.1
the hS condition of x = 0 of (1), (12), (13), and (14), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1

(
a(s)|y(s)|+ c(s)w(|y(s)|)

+b(s)

∫ s

t0

k(τ)|y(τ)|dτ + c(s)

∫ s

t0

q(τ)|y(τ)|dτ
)
ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)
(
a(s)

|y(s)|
h(s)

+ c(s)w(
|y(s)|
h(s)

+b(s)

∫ s

t0

k(τ)
|y(τ)|
h(τ)

dτ + c(s)

∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ
)
ds.

Set u(t) = |y(t)||h(t)|−1. Then, an application of Lemma 2.1 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ + c(s)

∫ s

t0

q(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of (2) is bounded
on [t0,∞), and so the proof is complete. �

Remark 2.1. Letting w(u) = u and c(t) = 0 in Theorem 2.2, we obtain the
same result as that of Theorem 3.1 in [9].

Theorem 2.3. Let a, b, c, q, u, w ∈ C(R+) and w(u) be nondecreasing in u such
that u ≤ w(u) and 1

vw(u) ≤ w(uv ) for some v > 0. Suppose that fx(t, 0) is
t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant
δ > 0, the solution x = 0 of (1) is hS with the increasing function h, and g in
(2) satisfies ∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t))|, (15)

and

|h(t, y(t), T y(t))| ≤ b(t)w(|y(t)|) + c(t)|Ty(t)|, |Ty(t)| ≤
∫ t

t0

q(s)|y(s)|ds, t ≥ t0 ≥ 0,

(16)
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where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞, and
∫∞
t0

q(s)ds < ∞.

Then, any solution y(t) = y(t, t0, y0) of (2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s) + c(s)

∫ s

t0

q(τ)dτ)ds
]
, t0 ≤ t < b1,

where W and W−1 are the same functions as in Lemma 1.5, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + b(s) + c(s)

∫ s

t0

q(τ)dτ)ds ∈ domW−1
}
.

Proof. It is known that the solution of (2) is represented by the integral equation
(14). By Theorem 1.3, since the solution x = 0 of (1) is hS, the solution v = 0
of (3) is hS. Therefore, by Theorem 1.4, the solution z = 0 of (4) is hS. Using
the nonlinear variation of constants formula (14), the hS condition of x = 0 of
(1), (15), and (16), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1

(
a(s)w(|y(s)|) + b(s)w(|y(s)|)

+c(s)

∫ s

t0

q(τ)|y(τ)|dτ
)
ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)(a(s) + b(s))w(
|y(s)|
h(s)

)ds

+

∫ t

t0

c2h(t)c(s)

∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτds.

Put u(t) = |y(t)||h(t)|−1. Then, by Lemma 1.6, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s) + c(s)

∫ s

t0

q(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. From the above estimation, we obtain the desired
result. Thus, the theorem is proved. �

Remark 2.2. Letting b(t) = c(t) = 0 in Theorem 2.3, we obtain the same result
as that of Theorem 3.2 in [10].

Lemma 2.4. Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C[R+,R+], w ∈ C((0,∞)) and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that, for some c ≥ 0, we have

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)
(∫ s

t0

(λ3(τ)u(τ) + λ4(τ)

∫ τ

t0

λ5(s)u(r)dr)dτ

+ λ6(s)

∫ s

t0

λ7(τ)u(τ)dτ
)
ds, t ≥ t0.

(17)
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Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

[λ1(s) + λ2(s)
(∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+λ6(s)

∫ s

t0

λ7(τ)dτ
)
]ds

]
, t ≥ t0.

(18)

Proof. Define a function v(t) by the right member of (17). Then, we have v(t0) =
c and

v′(t) = λ1(t)w(u(t)) + λ2(t)
(∫ t

t0

(λ3(s)u(s) + λ4(s)

∫ s

t0

λ5(τ)u(τ)dτ)ds

+λ6(t)

∫ t

t0

λ7(s)u(s)ds
)

≤
[
λ1(t) + λ2(t)

(∫ t

t0

(λ3(s) + λ4(s)

∫ s

t0

λ5(τ)dτ)ds

+λ6(t)

∫ t

t0

λ7(s)ds
)]

w(v(t)),

t ≥ t0, since v(t) is nondecreasing, u ≤ w(u), and u(t) ≤ v(t). Now, by integrat-
ing the above inequality on [t0, t] and v(t0) = c, we have

v(t) ≤ c+

∫ t

t0

(
λ1(s) + λ2(s)

∫ s

t0

(λ3(τ) + λ4(τ)

∫ τ

t0

λ5(r)dr)dτ

+λ6(s)

∫ s

t0

λ7(τ)dτ
)
w(z(s))ds.

(19)

Thus, (19) yields the estimate (18). �
Theorem 2.5. Let a, b, c, k, q, u, w ∈ C(R+) and w(u) be nondecreasing in u
such that u ≤ w(u) and 1

vw(u) ≤ w(uv ) for some v > 0. Suppose that fx(t, 0)
is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant
δ > 0, the solution x = 0 of (1) is hS with the increasing function h, and g in
(2) satisfies

|g(t, y(t))| ≤ a(t)|y(t)|+ b(t)

∫ t

t0

k(s)|y(s)|ds (20)

and

|h(t, y(t), T y(t))| ≤ c(t)(w(|y(t)|) + |Ty(t)|), |Ty(t)| ≤
∫ t

t0

q(s)|y(s)|ds, (21)

t ≥ t0 ≥ 0, where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞,
∫∞
t0

k(s)ds <

∞, and
∫∞
t0

q(s)ds < ∞. Then, any solution y(t) = y(t, t0, y0) of (2) is bounded

on on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ
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+c(s)

∫ s

t0

q(τ)dτ ]ds
]
,

where W and W−1 are the same functions as in Lemma 1.5, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+c(s)

∫ s

t0

q(τ)dτ ]ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. By Theorem 1.3, since the solution x = 0 of (1) is hS, the solution
v = 0 of (3) is hS. Therefore, by Theorem 1.4, the solution z = 0 of (4) is hS.
Applying the nonlinear variation of constants formula (14), the hS condition of
x = 0 of (1), (20), and (21), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1

(∫ s

t0

(a(τ)|y(τ)|

+b(τ)

∫ τ

t0

k(r)|y(r)|dr)dτ + c(s)(w(|y(s)|) +
∫ s

t0

q(τ)|y(τ)|dτ)
)
ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)
(
c(s)w(

|y(s)|
h(s)

)

+

∫ s

t0

(a(τ)
|y(τ)|
h(τ)

+ b(τ)

∫ τ

t0

k(r)
|y(r)|
h(r)

dr)dτ + c(s)

∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ
)
ds.

Set u(t) = |y(t)||h(t)|−1. Then, by Lemma 2.4, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+c(s)

∫ s

t0

q(τ)dτ ]ds
]
,

where c = c1|y0|h(t0)−1. The above estimation yields the desired result since
the function h is bounded, and so the proof is complete. �

Remark 2.3. Letting w(u) = u and c(t) = 0 in Theorem 2.5, we obtain the
similar result as that of Theorem 3.1 in [9].

Theorem 2.6. Let a, b, c, q, u, w ∈ C(R+) and w(u) be nondecreasing in u such
that u ≤ w(u) and 1

vw(u) ≤ w(uv ) for some v > 0. Suppose that fx(t, 0) is
t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant
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δ > 0, the solution x = 0 of (1) is hS with the increasing function h, and g in
(2) satisfies

|g(t, y(t))| ≤ a(t)w(|y(t)|) (22)

and

|h(t, y(t), T y(t))| ≤ b(t)|y(t)|+ c(t)

∫ t

t0

q(τ)|y(τ)|dτ, (23)

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞,
∫∞
t0

c(s)ds < ∞, and
∫∞
t0

q(s)ds < ∞.

Then, any solution y(t) = y(t, t0, y0) of (2) is bounded on [t0,∞) and

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(b(s) + c(s)

∫ s

t0

q(τ)dτ +

∫ s

t0

a(τ)dτ)ds
]

where W and W−1 are the same functions as in Lemma 1.5, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(b(s) + c(s)

∫ s

t0

q(τ)dτ +

∫ s

t0

a(τ)dτ)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. By Theorem 1.3, since the solution x = 0 of (1) is hS, the solution
v = 0 of (3) is hS. Therefore, by Theorem 1.4, the solution z = 0 of (4) is hS.
By Lemma 2.1, the hS condition of x = 0 of (1), (22), and (23), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1

(∫ s

t0

a(τ)w(|y(τ)|)dτ

+b(s)|y(s)|+ c(s)

∫ s

t0

q(τ)|y(τ)|dτ
)
ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)
(
b(s)

|y(s)|
h(s)

+c(s)

∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ +

∫ s

t0

a(τ)w(
|y(τ)|
h(τ)

)dτ
)
ds.

Set u(t) = |y(t)||h(t)|−1. Then, by Lemma 1.7, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(b(s) + c(s)

∫ s

t0

q(τ)dτ +

∫ s

t0

a(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. Thus, any solution y(t) = y(t, t0, y0) of (2) is bounded
on [t0,∞). This completes the proof. �

Remark 2.4. Letting b(t) = c(t) = 0 in Theorem 2.6, we obtain the similar
result as that of Theorem 3.5 in [10].
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