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Abstract. In this paper, we investigate existence of solutions to a class
of quadratic integral equation of Fredholm type in the space of functions

with tempered moduli of continuity. Two numerical examples are given to
illustrate our results.

AMS Mathematics Subject Classification : 26A33, 26A51, 26D15.
Key words and phrases : Quadratic integral equation, Tempered moduli of
continuity, Schauder fixed point theorem.

1. Introduction

Fractional integral and differential equations play increasingly important roles
in the modeling of real world problems. Some problems in physics, mechanics
and other fields can be described with the help of all kinds of fractional differen-
tial and integral equations. For more recent development on Riemann-Liouville,
Caputo and Hadamard fractional calculus, the reader can refer to the mono-
graphs [1, 2, 3, 4, 5, 6].

Quadratic integral equations arise naturally in applications of real world prob-
lems. For example, problems in the theory of radiative transfer in the theory
of neutron transport and in the kinetic theory of gases lead to the quadratic
equation [7, 8, 9, 10]. There are many interesting existence results for all kinds
of quadratic integral equations, one can refer to [11, 12, 13, 14, 15, 16, 17]. Our
group extend to study the existence, local attractivity and stability of solutions
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to fractional version Urysohn type quadratic integral equations [18] and Erdélyi-
Kober type quadratic integral equations [19] and Hadamard types quadratic
integral equations [20] in the space of continuous functions.

Very recently, Banaś and Nalepa [21] study the space of real functions defined
on a bounded metric space and having growths tempered by a modulus of con-
tinuity and derive the existence theorem for some quadratic integral equations
of Fredholm type in the space of functions satisfying the Hölder condition. Fur-
ther, Caballero et al. [22] study the solvability of a quadratic integral equation
of Fredholm type in Hölder spaces.

The aim of the paper is to investigate the existence of solutions of the following
integral equation of Fredholm type

x(t) = f(t, x(t)) + x(t)

∫ b

a

k(t, τ)x(τ)dτ, t ∈ [a, b], (1)

in Cω,g[a, b] (see Section 2), where the functions f and k will be defined in the
later.

By using a sufficient condition for the relative compactness in the space of
functions with tempered moduli of continuity (see Theorem 2.5) and the classical
Schauder fixed point theorem, we derive new existence result (see Theorem 3.5).
Finally, two numerical examples are given to illustrate our results.

2. Preliminaries

Definition 2.1 (see Section 2 [21]). A function ω : R+ → R+ is said to be a
modulus of continuity if ω(0) = 0, ω(ϵ) > 0 for ϵ > 0, and ω is nondecreasing on
R.

Let C[a, b] be the space of continuous functions on [a, b] equipped with ∥x∥∞ =
sup{|x(t)| : t ∈ [a, b]} for x ∈ C[a, b]. We denote Cω,g[a, b] be the set of all real
functions defined on [a, b] such that their growths are tempered by the modulus
of continuity ω with respect to a function g. That is, there exists a constant
Hω,g

x > 0 such that

|x(t)− x(s)| ≤ Hω,g
x ω(g(t)− g(s)) (2)

for all t, s ∈ [a, b] where g : [a, b] → R is a monotonic function.
Without loss of generality, we suppose that the above g be a increasing func-

tion and g(t) − g(s) ≥ 0 for t ≥ s in the this paper. Obviously, Cω,g[a, b] is a
linear subspace of C[a, b].

For x ∈ Cω,g[a, b], we denote Hω,g
x be the least possible constant for which

inequality (2) is satisfied. More precisely, we set

Hω,g
x = sup

{
|x(t)− x(s)|
ω(g(t)− g(s))

: t, s ∈ [a, b], t > s

}
.

Next, the space Cω,g[a, b] can be equipped with the norm

∥x∥ω,g = |x(a)|+ sup

{
|x(t)− x(s)|
ω(g(t)− g(s))

: t, s ∈ [a, b], t > s

}
,
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for x ∈ Cω,g[a, b]. Then (Cω,g[a, b], ∥ · ∥ω,g) is a Banach space.
Inspired by the properties of the space of Hölder functions in [21, see (41),

(45)], we give the following sharp results.

Lemma 2.2. For any x ∈ Cω,g[a, b], the following inequality is satisfied

∥x∥∞ ≤ max{1, ω(g(b)− g(a))}∥x∥ω,g.

Proof. For any x ∈ Cω,g[a, b] and t ∈ [a, b] we obtain

|x(t)|
≤ |x(t)− x(a)|+ |x(a)|
≤ sup{|x(t)− x(s)| : t, s ∈ [a, b]}+ |x(a)|

= |x(a)|+ sup

{
|x(t)− x(s)|
ω(g(t)− g(s))

· ω(g(t)− g(s)) : t, s ∈ [a, b], t > s

}
≤ |x(a)|+ ω(g(b)− g(a)) sup

{
|x(t)− x(s)|
ω(g(t)− g(s))

: t, s ∈ [a, b], t > s

}
≤ max{1, ω(g(b)− g(a))}

×
{
|x(a)|+ sup

{
|x(t)− x(s)|
ω(g(t)− g(s))

: t, s ∈ [a, b], t > s

}}
≤ max{1, ω(g(b)− g(a))}∥x∥ω,g.

�
Lemma 2.3. Suppose that ω2(g(t) − g(s)) ≤ Gω1(g(t) − g(s)) for t, s ∈ [a, b]
where G > 0. Then we have

Cω2,g[a, b] ⊂ Cω1,g[a, b] ⊂ C[a, b].

Moreover, for any x ∈ Cω2,g[a, b] the following inequality holds

∥x∥ω1,g ≤ max{1, G}∥x∥ω2,g.

Proof. For any x ∈ Cω2,g[a, b], we obtain

|x(t)− x(s)| ≤ Hω2,g
x ω2(g(t)− g(s)) ≤ GHω2,g

x ω1(g(t)− g(s)).

This shows that x ∈ Cω1,g[a, b] and hence we infer that inclusions hold. Further,

∥x∥ω1,g = |x(a)|+ sup

{
|x(t)− x(s)|

ω1(g(t)− g(s))
: t, s ∈ [a, b], t > s

}
≤ |x(a)|+G sup

{
|x(t)− x(s)|

ω2(g(t)− g(s))
: t, s ∈ [a, b], t > s

}
≤ max{1, G}∥x∥ω2,g.

�
Remark 2.1. In particular, if limϵ→0

ω2(ϵ)
ω1(ϵ)

= 0 then the above imbedding rela-

tions also hold and for any x ∈ Cω2,g[a, b], we have ∥x∥ω1,g ≤ max{1,M}∥x∥ω2,g =
∥x∥ω2,g, where M is a arbitrarily small positive number.
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Theorem 2.4 (see Theorem 5 [21]). Assume that ω1, ω2 are moduli of continuity

being continuous at zero and such that limϵ→0
ω2(ϵ)
ω1(ϵ)

= 0. Further, assume that

(X, d) is a compact metric space. Then, if A is a bounded subset of the space
Cω2,g(X) then A is relatively compact in the space Cω1,g(X).

Theorem 2.5. Suppose that limϵ→0
ω2(ϵ)
ω1(ϵ)

= 0. Denote Bω2,g
r = {x ∈ Cω2,g[a, b] :

∥x∥ω2,g ≤ r}. Then Bω2,g
r is compact in the space Cω1,g[a, b].

Proof. By Theorem 2.4, since Bω2,g
r is a bounded subset in Cω2,g[a, b], it is a

relatively compact subset of Cω1,g[a, b]. Suppose that (xn) ⊂ Bω2,g
r and

xn → x (according to ∥ · ∥ω1,g)

with x ∈ Cω1,g[a, b]. This means that for ε > 0 we can find n0 ∈ N such that

∥xn − x∥ω1,g ≤ ε,

for any n ≥ n0, or, equivalently

|xn(a)− x(a)|

+sup

{
|xn(t)− x(t)− (xn(s)− x(s))|

ω1(g(t)− g(s))
: t, s ∈ [a, b], t > s

}
≤ ε, (3)

for any n ≥ n0.
This implies that xn(a) → x(a).
Moreover, if in (3) we put s = a, then we get

sup

{
|xn(t)− x(t)− (xn(a)− x(a))|

ω1(g(t)− g(s))
: t, s ∈ [a, b], t > s

}
< ε,

for any n ≥ n0.
The last inequality implies that

|xn(t)− x(t)− (xn(a)− x(a))| < εω1(g(t)− g(s)) ≤ εω1(g(b)− g(a)), (4)

for any n ≥ n0 and for any t ∈ [a, b].
Therefore, for any n ≥ n0 and any t ∈ [a, b] and taking into account (3) and

(4), we have

|xn(t)− x(t)| ≤ |(xn(t)− x(t))− (xn(a)− x(a))|+ |xn(a)− x(a)|
< εω1(g(b)− g(a)) + ε.

Consequently,

∥xn − x∥∞ → 0. (5)

Next, we will prove that x ∈ Bω2,g
r .

In fact, since (xn) ⊂ Bω2,g
r ⊂ Cω2,g[a, b], we have that

|xn(t)− xn(s)|
ω2(g(t)− g(s))

≤ r,

for any t, s ∈ [a, b] with t > s, and, accordingly,

|xn(t)− xn(s)| ≤ rω2(g(t)− g(s)),
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for any t, s ∈ [a, b].
Letting in the above inequality with n → ∞ and taking into account (5), we

deduce that

|x(t)− x(s)| ≤ rω2(g(t)− g(s)),

for any t, s ∈ [a, b].
Hence we get

|x(t)− x(s)|
ω2(g(t)− g(s))

≤ r,

for any t, s ∈ [a, b], and this means that x ∈ Bω2,g
r . This proves that Bω2,g

r is a
closed subset of Cω1,g[a, b]. Thus, x ∈ Bω2,g

r is a compact subset of Cω1,g[a, b].
This finishes the proof. �

3. Main results

In this section, we will study the solvability of the equation (1) in Cω,g[a, b].
We will use the following assumptions:

(H1) f : [a, b] × R → R is a continuous function and there exists a positive
number k1 such that

|f(t, x)− f(t, y)| ≤ k1|x− y|,

and set k = |f(a, a)|. Meanwhile, for any t, s ∈ [a, b] and t > s, there exists a
positive constant k2 such that the inequality

|f(t, x(s))− f(s, x(s))|
ω2(g(t)− g(s))

≤ k2|x(s)|.

(H2) k : [a, b] × [a, b] → R is a continuous function satisfies the tempered by
the modulus of continuity with respect to the first variable, that is, there exists
a constant Kω2 such that

|k(t, τ)− k(s, τ)| ≤ Kω2ω2(g(t)− g(s)),

for any t, s, τ ∈ [a, b].
(H3) The following inequality is satisfied

(2K +Kω2(b− a))max2{1, ω2(g(b)− g(a))}r2

+

[
k1 + (k1 + k2)max{1, ω2(g(b)− g(a))} − 1

]
r + k + |a|k1 < 0, (6)

where K = sup
{∫ b

a
|k(t, τ)|dτ : t ∈ [a, b]

}
.

Consider the operator z defined on Cω2,g[a, b] by

(zx)(t) = f(t, x(t)) + x(t)

∫ b

a

k(t, τ)x(τ)dτ, t ∈ [a, b].

Lemma 3.1. The operator z maps Cω2,g[a, b] into itself.
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Proof. In fact, we take x ∈ Cω2,g[a, b] and t, s ∈ [a, b] with t > s. Then, by
assumptions (H1)-(H3), we obtain

|(zx)(t)− (zx)(s)|
ω2(g(t)− g(s))

≤ |f(t, x(t))− f(s, x(s))|
ω2(g(t)− g(s))

+
|x(t)

∫ b

a
k(t, τ)x(τ)dτ − x(s)

∫ b

a
k(t, τ)x(τ)dτ |

ω2(g(t)− g(s))

+
|x(s)

∫ b

a
k(t, τ)x(τ)dτ − x(s)

∫ b

a
k(s, τ)x(τ)dτ |

ω2(g(t)− g(s))

≤ |f(t, x(t))− f(t, x(s))|+ |f(t, x(s))− f(s, x(s))|
ω2(g(t)− g(s))

+
|x(t)− x(s)|

ω2(g(t)− g(s))

∫ b

a

|k(t, τ)||x(τ)|dτ +
|x(s)|

∫ b

a
|k(t, τ)− k(s, τ)||x(τ)|dτ
ω2(g(t)− g(s))

≤ k1|x(t)− x(s)|
ω2(g(t)− g(s))

+
|f(t, x(s))− f(s, x(s))|

ω2(g(t)− g(s))

+
|x(t)− x(s)|

ω2(g(t)− g(s))
∥x∥∞

∫ b

a

|k(t, τ)|dτ +
∥x∥∞∥x∥∞

∫ b

a
|k(t, τ)− k(s, τ)|dτ

ω2(g(t)− g(s))

≤ k1H
ω2,g
x + k2|x(s)|+K∥x∥∞

|x(t)− x(s)|
ω2(g(t)− g(s))

+
∥x∥2∞

∫ b

a
Kω2ω2(g(t)− g(s))dτ

ω2(g(t)− g(s))

≤ k1H
ω2,g
x + k2∥x∥∞ +K∥x∥∞Hω2,g

x +Kω2(b− a)∥x∥2∞.

By Lemma 2.2, since ∥x∥∞ ≤ max{1, ω2(g(b) − g(a))}∥x∥ω2,g and, as Hω2,g
x ≤

∥x∥ω2,g, we infer that

|(zx)(t)− (zx)(s)|
ω2(g(t)− g(s))

≤ (k1 + k2 max{1, ω2(g(b)− g(a))}) ∥x∥ω2,g

+(K +Kω2(b− a))max2{1, ω2(g(b)− g(a))}∥x∥2ω2,g.

This proves that the operator z maps Cω2,g[a, b] into itself. �
Lemma 3.2. Let Bω2,g

r0 = {x ∈ Cω2,g[a, b] : ∥x∥ω2,g ≤ r0} where r0 > 0 satisfy-
ing the inequality (6). Then z : Bω2,g

r0 → Bω2,g
r0 .

Proof. For any x ∈ Bω2,g
r0 , one has

∥zx∥ω2,g ≤ |f(a, x(a))|+ |x(a)|
∫ b

a

|k(a, τ)||x(τ)|dτ

+(k1 + k2 max{1, ω2(g(b)− g(a))}) ∥x∥ω2,g

+(K +Kω2(b− a))max2{1, ω2(g(b)− g(a))}∥x∥2ω2,g
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≤ |f(a, x(a))− f(a, a)|+ |f(a, a)|+K∥x∥2∞
+(k1 + k2 max{1, ω2(g(b)− g(a))}) ∥x∥ω2,g

+(K +Kω2(b− a))max2{1, ω2(g(b)− g(a))}∥x∥2ω2,g

≤ k1|x(a)− a|+ k + (k1 + k2 max{1, ω2(g(b)− g(a))}) ∥x∥ω2,g

+(2K +Kω2(b− a))max2{1, ω2(f(b)− f(a))}∥x∥2ω2,g

≤ |a|k1 + k1∥x∥∞ + k + (k1 + k2 max{1, ω2(g(b)− g(a))}) ∥x∥ω2,g

+(2K +Kω2(b− a))max2{1, ω2(g(b)− g(a))}∥x∥2ω2,g

= k + |a|k1 +
[
k1 + (k1 + k2)max{1, ω2(g(b)− g(a))}

]
∥x∥ω2,g

+(2K +Kω2(b− a))max2{1, ω2(g(b)− g(a))}∥x∥2ω2,g.

Consequently, from above it follows that z transforms the ball Bω2,g
r0 = {x ∈

Cω2,g[a, b] : ∥x∥ω2,g ≤ r0} into itself, for any r0 ∈ [r1, r2]; i.e., z : Bω2,g
r0 → Bω2,g

r0 ,
where r1 ≤ r0 ≤ r2. �

Lemma 3.3. Bω2,g
r0 is a compact subset in Cω1,g[a, b].

Proof. According to Theorem 2.5, we can know Bω2,g
r0 is a compact subset in

Cω1,g[a, b]. �

Lemma 3.4. The operator z is continuous on Bω2,g
r0 , where we consider the

norm ∥ · ∥ω1,g in Bω2,g
r0 .

Proof. To do this, we fix x ∈ Bω2,g
r0 and ε > 0. Suppose that y ∈ Bω2,g

r0 and
∥x − y∥ω1,g ≤ δ, where δ is a positive number such that δ < ε

2ρ where ρ =

max{ρ1, ρ2}, ρ1, ρ2 is defined below. Then, for any t, s ∈ [a, b] with t > s, we
have

|[(zx)(t)− (zy)(t)]− [(zx)(s)− (zy)(s)]|
ω1(g(t)− g(s))

≤

∣∣∣∣k1|x(t)− y(t)| − k1|x(s)− y(s)|
∣∣∣∣

ω1(g(t)− g(s))

+

∣∣∣∣ [x(t)
∫ b

a
k(t, τ)x(τ)dτ − y(t)

∫ b

a
k(t, τ)x(τ)dτ ]

ω1(g(t)− g(s))

+
[y(t)

∫ b

a
k(t, τ)x(τ)dτ − y(t)

∫ b

a
k(t, τ)y(τ)dτ ]

ω1(g(t)− g(s))

−
[x(s)

∫ b

a
k(s, τ)x(τ)dτ − y(s)

∫ b

a
k(s, τ)x(τ)dτ ]

ω1(g(t)− g(s))

−
[y(s)

∫ b

a
k(s, τ)x(τ)dτ − y(s)

∫ b

a
k(s, τ)y(τ)dτ ]

ω1(g(t)− g(s))

∣∣∣∣
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= k1

∣∣∣∣|x(t)− y(t)| − |x(s)− y(s)|
∣∣∣∣

ω1(g(t)− g(s))

+
1

ω1(g(t)− g(s))

∣∣∣∣(x(t)− y(t))

∫ b

a

k(t, τ)x(τ)dτ

+y(t)

∫ b

a

k(t, τ)(x(τ)− y(τ))dτ

−(x(s)− y(s))

∫ b

a

k(s, τ)x(τ)dτ − y(s)

∫ b

a

k(s, τ)(x(τ)− y(τ))dτ

∣∣∣∣
≤ k1∥x− y∥ω1,g +

|(x(t)− y(t))− (x(s)− y(s))|
ω1(g(t)− g(s))

∥x∥∞
∫ b

a

|k(t, τ)|dτ

+[|(x(s)− y(s))− (x(a)− y(a))|+ |(x(a)− y(a))|]∥x∥∞

×
∫ b

a

|k(t, τ)− k(s, τ)|
ω1(g(t)− g(s))

dτ

+

∣∣∣∣y(t) ∫ b

a
k(t, τ)(x(τ)− y(τ))dτ − y(s)

∫ b

a
k(t, τ)(x(τ)− y(τ))dτ

∣∣∣∣
ω1(g(t)− g(s))

+

∣∣∣∣y(s) ∫ b

a
k(t, τ)(x(τ)− y(τ))dτ − y(s)

∫ b

a
k(s, τ)(x(τ)− y(τ))dτ

∣∣∣∣
ω1(g(t)− g(s))

≤ k1∥x− y∥ω1,g +K∥x− y∥ω1,g∥x∥∞

+sup

{
|(x(t)− y(t))− (x(s)− y(s))|

}
∥x∥∞

∫ b

a

Kω2ω2(g(t)− g(s))

ω1(f(t)− f(s))
dτ

+|(x(a)− y(a))|∥x∥∞
∫ b

a

Kω2ω2(g(t)− g(s))

ω1(g(t)− g(s))
dτ

+
|y(t)− y(s)|

ω1(g(t)− g(s))

∫ b

a

|k(t, τ)||x(τ)− y(τ)|dτ

+|y(s)|
∫ b

a

|k(t, τ)− k(s, τ)|
ω1(g(t)− g(s))

|x(τ)− y(τ)|dτ

≤ k1∥x− y∥ω1,g +K∥x− y∥ω1,g∥x∥∞

+M(b− a)∥x∥∞Kω2 sup

{
|(x(t)− y(t))− (x(s)− y(s))|

ω1(g(t)− g(s))
ω1(g(t)− g(s))

}
+M(b− a)Kω2∥x∥∞|(x(a)− y(a))|+KHω1,g

y ∥x− y∥∞

+∥y∥∞∥x− y∥∞
∫ b

a

Kω2ω2(g(t)− g(s))

ω1(g(t)− g(s))
dτ

≤ k1∥x− y∥ω1,g +K∥x− y∥ω1,g∥x∥∞
+M(b− a)∥x∥∞Kω2ω1(g(b)− g(a))∥x− y∥ω1,g
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+M(b− a)Kω2∥x∥∞∥x− y∥∞ +K∥y∥ω1,g∥x− y∥∞
+M(b− a)Kω2∥y∥∞∥x− y∥∞

≤ k1∥x− y∥ω1,g +Kmax{1, ω2(g(b)− g(a))}∥x− y∥ω1,g∥x∥ω2,g

+M(b− a)Kω2ω1(g(b)− g(a))max{1, ω2(g(b)− g(a))}∥x− y∥ω1,g∥x∥ω2,g

+M(b− a)Kω2 max{1, ω2(g(b)− g(a))}
×max{1, ω1(g(b)− g(a))}∥x− y∥ω1,g∥x∥ω2,g

+Kmax{1, ω1(g(b)− g(a))}∥x− y∥ω1,g∥y∥ω1,g

+M(b− a)Kω2
max{1, ω2(g(b)− g(a))}

×max{1, ω1(g(b)− g(a))}∥x− y∥ω1,g∥y∥ω2,g.

Define

ρ1 = k1 +Kmax{1, ω2(g(b)− g(a))}r0
+M(b− a)Kω2ω1(g(b)− g(a))max{1, ω2(g(b)− g(a))}r0
+2M(b− a)Kω2 max{1, ω2(g(b)− g(a))}max{1, ω1(g(b)− g(a))}r0
+Kmax{1, ω1(g(b)− g(a))}r0.

Since ∥y∥ω1,g ≤ ∥y∥ω2,g (see Remark 2.1) and x, y ∈ Bω2,g
r0 , from the above

inequality we infer that

|[(zx)(t)− (zy)(t)]− [(zx)(s)− (zy)(s)]|
ω1(g(t)− g(s))

≤ ρ1δ <
ε

2
. (7)

On the other hand,

|(zx)(a)− (zy)(a)|

≤ |f(a, x(a))− f(a, y(a))|+
∣∣∣∣x(a) ∫ b

a

k(a, τ)x(τ)dτ − x(a)

∫ b

a

k(a, τ)y(τ)dτ

∣∣∣∣
+

∣∣∣∣x(a) ∫ b

a

k(a, τ)y(τ)dτ − y(a)

∫ b

a

k(a, τ)y(τ)dτ

∣∣∣∣
≤ k1|x(a)− y(a)|+

∣∣∣∣x(a)∫ b

a

k(a, τ)(x(τ)− y(τ))dτ

∣∣∣∣
+

∣∣∣∣(x(a)− y(a))

∫ b

a

k(a, τ)y(τ)dτ

∣∣∣∣
≤ k1∥x− y∥∞ +K∥x∥∞∥x− y∥∞ +K∥y∥∞∥x− y∥∞
≤ k1 max{1, ω1(g(b)− g(a))}∥x− y∥ω1,g

+Kmax{1, ω2(g(b)− g(a))}max{1, ω1(g(b)− g(a))}∥x∥ω2,g∥x− y∥ω1,g

+Kmax{1, ω2(g(b)− g(a))}max{1, ω1(g(b)− g(a))}∥y∥ω2,g∥x− y∥ω1,g

≤ ρ2δ,

where

ρ2 = k1 max{1, ω1(g(b)− g(a))}
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+2Kmax{1, ω2(g(b)− g(a))}max{1, ω1(g(b)− g(a))}r0.

which yields that

|(zx)(a)− (zy)(a)| ≤ ρ2δ <
ε

2
. (8)

By (7) and (8), we have

∥zx−zy∥ω1,g

= |(zx)(a)− (zy)(a)|

+sup

{
|[(zx)(t)− (zy)(t)]− [(zx)(s)− (zy)(s)]|

ω1(g(t)− g(s))
: t, s ∈ [a, b], t > s

}
<

ε

2
+

ε

2
= ε.

This proves the operator z is continuous at the point x ∈ Bω2,g
r0 for the norm

∥ · ∥ω1,g. �

Theorem 3.5. Under assumptions (H1)-(H3), the equation (1) has at least one
solution in the space Cω1,g[a, b].

Proof. According to Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4, the
operator z is continuous at the point x ∈ Bω2,g

r0 for the norm ∥·∥ω1,g. Since B
ω2,g
r0

is compact in Cω2,g[a, b], applying the classical Schauder fixed point theorem we
obtain the desired result. �

4. Examples

Now we make two examples illustrating the main results in the above section.

Example 4.1. Let us consider the quadratic integral equation

x(t) =
1

100

√
ln t arctanx(t) + x(t)

∫ e

1

√
ln t+ ln τ

x(τ)

τ
dτ, t ∈ [1, e]. (9)

Set f(t, x(t)) = 1
100

√
ln t arctanx(t) and k(t, τ) =

√
ln t+ln τ

τ for t, τ ∈ [1, e]. It is
easy to see that

|k(t, τ)− k(s, τ)| ≤ | ln t− ln s| 12 ,
which implies Kω2 = 1 and

g(t) = ln t, ω2(g(t)− g(s)) = | ln t− ln s| 12 , ω2(g(e)− g(1)) = 1.

So we can choose

ω1(g(t)− g(s)) = | ln t− ln s|α, 0 < α <
1

2
.

Moreover, K = sup{
∫ e

1
|
√
ln t+ln τ

τ |dτ : t ∈ [1, e]} = 2
3 (2

√
2− 1).

On the other hand,

|f(t, x(t))− f(t, y(t))| = 1

100

√
ln t| arctanx(t)− arctan y(t)| ≤ 1

100
|x(t)− y(t)|,
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so we can get k1 = 1
100 , k = |f(1, 1)| = 0 and

| 1
100

√
ln t arctanx(s)− 1

100

√
ln s arctanx(s)|

| ln t− ln s| 12
≤ 1

100
| arctanx(s)| ≤ 1

100
|x(s)|,

so k2 = 1
100 .

In what follows, the condition (H3) reduce to the inequality(
8
√
2− 7

3
+ e

)
r2 − 97

100
r +

1

100
< 0.

Obviously, there exist a positive number satisfying these conditions. For exam-
ple, one can choose r = 0.1.

Finally, applying Theorem 3.5, we conclude that the quadratic integral equa-
tion has at least one solution in the space C|·|α,ln ·[1, e] and displayed in Fig.1.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

1

2

3

4

5

6

7

8
x 10

−7

t

x

Fig.1 The solution of the equation (9).

Example 4.2. Consider another quadratic integral equation

x(t) =
1

10
5
√
t+ 1 sinx(t) + x(t)

∫ 1

0

5
√
3t2 + τx(τ)dτ, t ∈ [0, 1]. (10)

Set f(t, x(t)) = 1
10

5
√
t+ 1 sinx(t) and k(t, τ) = 5

√
3t2 + τ , t ∈ [0, 1]. Obviously,

|k(t, τ)− k(s, τ)| ≤ |3t2 − 3s2| 15 ≤ 5
√
6|t− s| 15 ,

which gives Kω2
= 5

√
6, g(t) = t, ω2(g(t)− g(s)) = |t− s| 15 , ω2(g(1)− g(0)) = 1.

Then we choose

ω1(g(t)− g(s)) = |t− s|α, 0 < α <
1

5
.

Moreover, K = sup{
∫ 1

0
| 5
√
3t2 + τ |dτ : t ∈ [0, 1]} = sup{ 5

6 (3t
2 + τ)

6
5 |10 : t ∈

[0, 1]} = 5
6 (4

5
√
4− 3 5

√
3).
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On the other hand,

|f(t, x(t))− f(t, y(t))| = 1

10
5
√
t+ 1| sinx(t)− sin y(t)| ≤

5
√
2

10
|x(t)− y(t)|,

we can get k1 =
5√2
10 , k = |f(0, 0)| = 0 and

| 1
10

5
√
t+ 1 sinx(s)− 1

10
5
√
s+ 1 sinx(s)|

|t− s| 15
≤ 1

10
| sinx(s)| ≤ 1

10
|x(s)|,

so derive k2 = 1
10 .

In what follows, the condition (H3) reduce to the inequality

(200
5
√
4− 150

5
√
3 + 30

5
√
6)r2 + (6

5
√
2− 27)r < 0.

The condition reduce to r < 0.1676. Obviously, there exist a positive number
satisfying these conditions. For example, one can choose r = 0.16.

Finally, applying Theorem 3.5, we conclude that the quadratic integral equa-
tion has at least one solution in the space C|·|α,·[0, 1] and displayed in Fig.2.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

x 10
−4

t

x

Fig.2 The solution of the equation (10).
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