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TRAVELING WAVE SOLUTIONS TO THE HYPERELASTIC

ROD EQUATION†

BYUNGSOO MOON

Abstract. We consider the hyperelastic rod equation describing nonlin-
ear dispersive waves in compressible hyperelastic rods. We investigate the

existence of certain traveling wave solutions to this equation. We also deter-
mine whether two other equations(the b-family equation and the modified
Camassa-Holm equation) have our solution type.
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1. Introduction

This paper is concerned with the hyperelastic rod equation

ut − utxx + 3uux = γ(2uxuxx + uuxxx), t > 0, x ∈ R, (1)

which was obtained as a model for nonlinear waves in cylindrical hyperelastic
rods with u(t, x) representing the radial stretch relative to a pre-stressed state,
and the physical parameter γ ranging from −29.4760 to 3.1474 [6, 7, 8]. From
the mathematical view point, we regard γ as a real number. Among (1), there
are two other important equations.

When γ = 1, it recovers the standard Camassa-Holm(CH) equation [3]

ut − utxx + 3uux = 2uxuxx + uuxxx

arises as a model for the unidirectional propagation of shallow water waves over a
flat bottom [3], as well as water waves moving over an underlying shear flow[12].
The CH equation is completely integrable systems with a corresponding Lax pair
formulation, a bi-Hamiltonian structure, and an infinite sequence of conservation
laws [3]. The CH equation also admits peaked solitary waves or ”peakons” [3]:
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u(t, x) = ce−|x−ct|, c ̸= 0, which are smooth except at the crests, where they are
continuous, but have a jump discontinuity in the first derivative. These peakons
are shown to be stable [5]. Moreover, it admits the multi-peakon solutions (cf.
[3]).

If γ = 0, then (1) becomes the regularized long wave equation, a well-known
equation for surface wave in a channel [1]. All solutions are global and the
solitary waves are smooth. Despite having a Hamiltonian structure, the equation
is not integrable and its solitary waves are not solitons [9].

For general γ ∈ R, mathematical properties of (1) have been studied further
in many works. Dai and Huo [8] observed that (1) was formally shown to admit
smooth, peaked, and cusped traveling waves. Subsequently, Lenells [13] used a
suitable framework for weak solutions to classify all weak traveling waves of the
hyperelastic rod equation (1). Constantin and Strauss [6] also investigated the
stability of a class of solitary waves for the rod equation (1) on the line.

Note that if p(x) := 1
2e

−|x|, x ∈ R, then u = (1 − ∂2
x)

−1m = p ∗ m, where
m := u− uxx and ∗ denotes the convolution product on R, given by

(f ∗ g)(x) :=
∫
R
f(y)g(x− y)dy.

This formulation allows us to define a weak form of (1) as follows :

ut + ∂x

(γ
2
u2 + p ∗ (3− γ

2
u2 +

γ

2
u2
x)
)
= 0, t > 0, x ∈ R. (2)

In this paper, we are interested in a special traveling wave (i.e. function of
x − ct for some c > 0) and in fact that solution will also be a solitary wave
solution (i.e. function of x − ct, decays to zero as |x| → ∞). Our solution will
be bounded in x ∈ R for each fixed t > 0. In fact, it will be bounded by c

γ . The

solution will be valid for any fixed value of c > 0. This will be a weak solution,
namely u(t, x) will not be differentiable at the ”peak” point. At any other points
the solution will have all the derivatives.

We are motivated by the paper [4], where they exhibited a similar solution to
the following equation

ut − utxx + (1 + 2β)uux = 2uxuxx + uuxxx

where 0 ≤ β < 1, but their result is also applicable to

ut − α2utxx + (1 + 2β)uux = α2(2uxuxx + uuxxx)

for any α2 > 0 and β ∈ [0, 1). By using transformation x 7−→ cx, we have

ut − α2c2utxx + (1 + 2β)cuux = α2c3(2uxuxx + uuxxx).

Choose c such that c = 1
α . Then we obtain

ut − utxx +
(1 + 2β)

α
uux =

1

α
(2uxuxx + uuxxx), α > 0.
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Our case is then obtained by choosing α > 0 such that (1+2β)
α = 3 (i.e. 1 < 1

α ≤
3). Our case is

ut − utxx + 3uux =
3

1 + 2β
(2uxuxx + uuxxx)

with β ∈ [0, 1). In our case, we can use result in [4] to get a solution for our
equation

ut − utxx + 3uux = γ(2uxuxx + uuxxx)

when γ ∈ (1, 3]. Solution in [4] covers our equation when γ ∈ (1, 3], but not when
γ > 3. In our case, we also cover γ > 3. In fact, our solution will be valid when
γ > 1.

This paper is organized as follows. In Section 2, we give the needed results
to pursue our goal. In Section 3, we shall show the existence of traveling wave
solutions for (2) under the condition γ > 1, by using an analogous analysis in
[4]. Finally, in Section 4 we determine whether the b-family equation [11] and
the modified Camassa-holm equation [10] have our solution type.

2. Preliminaries

In this section, we present the following basic technical Lemmas which play
a key role to obtain our main results.

Lemma 2.1. Suppose γ > 1 and {αn}∞n=1 be a sequence of positive real numbers
defined 

α1 = 1,

αn =
∑

i+j=n; i,j≥1

(
γ

2
−

3−γ
2 + γ

2 ij

n2 − 1

)
αiαj , n ≥ 2. (3)

Define

φ(x) :=
∞∑

n=1

αnx
n. (4)

Then, there exist R > 0 such that φ(x) is well-defined on |x| < R, where R is
the radius of the convergence for φ(x).

Proof. Let {ξn}∞n=1 be a sequence of positive real numbers defined
ξ1 = 1,

ξn =
γ

2

∑
i+j=n; i,j≥1

ξiξj n ≥ 2.

Set

ϱ(x) :=

∞∑
n=1

ξnx
n.
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It is obviously that αn ≤ ξn, for n = 1, 2, .... Note that

ϱ(x) = x+
γ

2

∞∑
n=2

∑
i+j=n

ξiξjx
n = x+

γ

2
ϱ2(x). (5)

Solving the equation (5), we have

ϱ(x) =
1

γ
(1−

√
1− 2γx).

This implies ϱ(x) is well-defined on (− 1
2γ ,

1
2γ ). Hence, φ(x) is well-defined, at

least, on (− 1
2γ ,

1
2γ ), which means there is R > 1

2γ such that φ(x) is well-defined

on |x| < R. This completes the proof of Lemma 2.1. �

Lemma 2.2. Consider the following initial value probem(IVP)

(1− γφ)
d2φ

dz2
− φ =

γ

2
(
dφ

dz
)2 − 3

2
φ2, φ(0) = 0, φ′(0) = 1. (6)

The solution of (6) can be implicitly expressed as (11).

Proof. Notice that (6) is independent of z. By assuming that dφ
dz := Ψ(φ), we

reach

(1− γφ)Ψ(φ)
dΨ

dφ
− γ

2
Ψ2(φ) = φ− 3

2
φ2. (7)

Solving the first-order ordinary differential equation (7), we get

dφ

dz
= Ψ(φ) =

√
1− φ

1− γφ
φ. (8)

By (8) and the transformation z → x with x := ez used in (15), we obtain√
1− γφ

1− φ

dφ

φ
= dz =

dx

x
. (9)

Using the transformation φ 7→ η with φ = 1−η2

1−γη2 , we have

2(γ − 1)

(η2 − 1)(γη2 − 1)
dη =

1

x
dx. (10)

Solving (10) to obtain an implicit analytic formula for function φ :

4(
√
γ − 1)

√
γ−1

(
√
γ + 1)

√
γ+1


√

γ(φ−1)
γφ−1 + 1√
γ(φ−1)
γφ−1 − 1


√
γ

√
φ−1
γφ−1 − 1√
φ−1
γφ−1 + 1

 = x, (11)

for x > 0. This completes the proof of Lemma 2.2. �

Under the same assumption of Lemma 2.1, we have the following important
result to get (39).
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Lemma 2.3. Assume γ > 1. Let {αn}∞n=1 and φ(x) be defined in (3) and
(4). Then φ(x) has a continuous extension to x = R such that φ(R) = 1

γ , or

limx→R− φ(x) = 1
γ .

Proof. By Lemma 2.1, we see tht φ(x) is well-defined on |x| < R. In order to show
that φ(x) has a continuous extension such that φ(R) = 1

γ , or limx→R− φ(x) = 1
γ ,

let us define

θ(x) :=

∞∑
n=2

 ∑
i+j=n

(
3−γ
2 + γ

2 ij

n2 − 1

)
αiαj

xn.

Since

φ(x) = x+

∞∑
n=2

∑
i+j=n

γ

2
αiαjx

n −
∞∑

n=2

 ∑
i+j=n

(
3−γ
2 + γ

2 ij

n2 − 1

)
αiαj

xn,

we obtain

φ(x)− x =
γ

2
φ2(x)− θ(x). (12)

Notice that for |x| < R

θ(x) =
3− γ

4

∑
n=2

1

n− 1

∑
i+j=n

αiαjx
n − 3− γ

4

∑
n=2

1

n+ 1

∑
i+j=n

αiαjx
n

+
γ

4

∑
n=2

1

n− 1

∑
i+j=n

ijαiαjx
n − γ

4

∑
n=2

1

n+ 1

∑
i+j=n

ijαiαjx
n

=
(3− γ)x

4

∫ x

0

[φ(y)]2

y2
dy − (3− γ)

4x

∫ x

0

[φ(y)]2dy

+
γx

4

∫ x

0

[φ′(y)]2dy − γ

4x

∫ x

0

y2[φ′(y)]2dy. (13)

By (12) and (13), we have

φ′′ +
xφ′ − φ

x2
=

γφφ′

x
− 3

2

φ2

x2
+

γ

2
(φ′)2 + γφφ′′. (14)

Since our goal is to show limx→R− φ(x) = 1
γ , we may assume that x > 0. Using

the transformation z 7→ x with x := ez, we have

dφ

dx
=

1

x

dφ

dz
,

d2φ

dx2
=

1

x2

d2φ

dz2
− 1

x2

dφ

dz
. (15)

Substituting (15) into (14), we obtain the ordinary differential equation

(1− γφ)
d2φ

dz2
− φ =

γ

2
(
dφ

dz
)2 − 3

2
φ2, (16)
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which is independent of z. By Lemma 2.2, we obtain implicitly expression of
solution for φ

4(
√
γ − 1)

√
γ−1

(
√
γ + 1)

√
γ+1


√

γ(φ−1)
γφ−1 + 1√
γ(φ−1)
γφ−1 − 1


√
γ

√
φ−1
γφ−1 − 1√
φ−1
γφ−1 + 1

 = x, (17)

for x > 0. Let

H(y) :=
4(
√
γ − 1)

√
γ−1

(
√
γ + 1)

√
γ+1


√

γ(φ−1)
γφ−1 + 1√
γ(φ−1)
γφ−1 − 1


√
γ

√
φ−1
γφ−1 − 1√
φ−1
γφ−1 + 1

 . (18)

By direct calculation we have

H ′(y) =

√
γy − 1

y − 1

H(y)

y
> 0 for 0 < y <

1

γ
. (19)

By the Implicit Function Theorem, we conclude that φ(x) is well-defined in
|x| < R, where

R :=
4(
√
γ − 1)

√
γ−1

(
√
γ + 1)

√
γ+1

(20)

and

lim
x→R−

φ(x) =
1

γ
. (21)

Since αn ≥ 0, n = 1, 2, ..., it is easy to check that

∞∑
n=1

αnR
n = φ(R) =

1

γ
.

This completes the proof of Lemma 2.3. �

3. Traveling wave solutions

In this section, we discuss the existence of traveling wave solutions to the
hyperelastic rod equation (2) with γ > 1.

Theorem 3.1. Let γ > 1. For every c > 0, the functions of the form
u(t, x) =

∞∑
n=1

βne
−n|x−ct|,

βn := cRnαn for n ≥ 1,

(22)

where αn and R are defined in (3) and (20), is a solution to (2) in the weak
sense.
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Proof. We need to show that u(t, x) satisfies (2). Notice that

ut(t, x) = c sign(x− ct)
∞∑

n=1

nβne
−n|x−ct|, (23)

ux(t, x) = −sign(x− ct)
∞∑

n=1

nβne
−n|x−ct|. (24)

Using (23), (24), and p(x) = 1
2e

−|x| for x ∈ R, we calculate from (2) that

γ

2
u2(t, x) + p ∗

(
3− γ

2
u2 +

γ

2
u2
x

)
(t, x) = K1 +K2, (25)

where

K1 :=
∞∑

n=2

∑
i+j=n

γβiβj

2
e−n|x−ct| and K2 :=

1

2

∞∑
n=2

Bn

∫ +∞

−∞
e−|x−y|e−n|y−ct|dy,

with Bn =
∑

i+j=n

(
3−γ
2 + γ

2 ij
)
βiβj .

When x > ct, by using
∫ +∞
−∞ =

∫ ct

−∞ +
∫ x

ct
+
∫ +∞
x

, we write K2 defined in (25)
as K2 = I1 + I2 + I3, where

I1 :=
1

2

∞∑
n=2

Bn

∫ ct

−∞
e−|x−y|e−n|y−ct|dy

I2 :=
1

2

∞∑
n=2

Bn

∫ x

ct

e−|x−y|e−n|y−ct|dy

I3 :=
1

2

∞∑
n=2

Bn

∫ +∞

x

e−|x−y|e−n|y−ct|dy. (26)

We directly compute I1 as follows:

I1 =
1

2

∞∑
n=2

Bn

∫ ct

−∞
e−(x−y)en(y−ct)dy =

1

2

∞∑
n=2

Bne
−(x+nct)

∫ ct

−∞
e(n+1)ydy

=
1

2

∞∑
n=2

1

n+ 1
Bne

(ct−x). (27)

In a similar manner,

I2 =
1

2

∞∑
n=2

Bn

∫ x

ct

e−(x−y)e−n(y−ct)dy =
1

2

∞∑
n=2

1

n− 1
Bn

(
e(ct−x) − en(ct−x)

)
(28)

and

I3 =
1

2

∞∑
n=2

Bn

∫ +∞

x

e(x−y)e−n(y−ct)dy =
1

2

∞∑
n=2

1

n+ 1
Bne

n(ct−x). (29)
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Plugging (27)-(29) into (26), we deduce that for x > ct

K2 = p ∗
(
3− γ

2
u2 +

γ

2
u2
x

)
(t, x) =

∞∑
n=2

n

n2 − 1
Bne

(ct−x) −
∞∑

n=2

1

n2 − 1
Bne

n(ct−x).

(30)

Using (25) and (30), we obtain for x > ct

∂x

(
γ

2
u2(t, x) + p ∗

(
3− γ

2
u2 +

γ

2
u2
x

)
(t, x)

)
= −

∞∑
n=2

n
∑

i+j=n

γβiβj

2
en(ct−x) −

∞∑
n=2

n

n2 − 1
Bn

(
e(ct−x) − en(ct−x)

)
. (31)

While for the case x ≤ ct, we split second term(K2) of (25) into the following
three parts:

K2 = p ∗
(
3− γ

2
u2 +

γ

2
u2
x

)
(t, x)

=
1

2

∞∑
n=2

Bn

{∫ x

−∞
+

∫ ct

x

+

∫ +∞

ct

}
e−|x−y|e−n|y−ct|dy

=: J1 + J2 + J3. (32)

For J1, a direct computation gives rise to

J1 =
1

2

∞∑
n=2

Bn

∫ x

−∞
e−(x−y)en(y−ct)dy =

1

2

∞∑
n=2

Bne
−(x+nct)

∫ x

−∞
e(n+1)ydy

=
1

2

∞∑
n=2

1

n+ 1
Bne

n(x−ct). (33)

Similarly, one obtains

J2 =
1

2

∞∑
n=2

Bn

∫ ct

x

e(x−y)en(y−ct)dy =
1

2

∞∑
n=2

1

n− 1
Bn

(
e(x−ct) − en(x−ct)

)
(34)

and

J3 =
1

2

∞∑
n=2

Bn

∫ +∞

ct

e(x−y)e−n(y−ct)dy =
1

2

∞∑
n=2

1

n+ 1
Bne

(x−ct). (35)

Using (25) and (33)-(35), we have for x ≤ ct

∂x

(
γ

2
u2(t, x) + p ∗

(
3− γ

2
u2 +

γ

2
u2
x

)
(t, x)

)
=

∞∑
n=2

n
∑

i+j=n

γβiβj

2
en(x−ct) +

∞∑
n=2

n

n2 − 1
Bn

(
e(x−ct) − en(x−ct)

)
. (36)
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On the other hand, using (23), we get

ut(t, x) =


cβ1e

(ct−x) + c
∞∑

n=2

nβne
n(ct−x), x > ct,

−cβ1e
(x−ct) − c

∞∑
n=2

nβne
n(x−ct), x ≤ ct.

(37)

As a result, (2) is equivalent to the recursive sequence of equation given by
cβ1 =

∞∑
n=2

n

n2 − 1

∑
i+j=n

(3− γ

2
+

γ

2
ij
)
βiβj ,

cβn =
∑

i+j=n

(
γ

2
−

3−γ
2 + γ

2 ij

n2 − 1

)
βiβj , n ≥ 2.

(38)

With the help of (3) and (22), we conclude that (38) holds if
∞∑

n=2

[ n

n2 − 1

∑
i+j=n

(3− γ

2
+

γ

2
ij
)
αiαj

]
Rn−1 = 1. (39)

Now, we apply Lemma 2.1 and 2.3 to show that (39) holds. Let us define

Φ(x) :=
∞∑

n=2

[ n

n2 − 1

∑
i+j=n

(3− γ

2
+

γ

2
ij
)
αiαj

]
xn−1.

From the definition of θ(x) in Lemma 2.3, we see that Φ(x) = θ′(x) for |x| < R.
By (12), we have θ′(x) = 1 + (γφ(x) − 1)φ′(x) for |x| < R. By Lemma 2.3, we
have limx→R− φ(x) = 1

γ and hence

lim
x→R−

(γφ(x)− 1)φ′(x) = 0.

Therefore,
lim

x→R−
Φ(x) = lim

x→R−
θ′(x) = 1.

Since αn ≥ 0 for n ≥ 1, one can easily to check that
∞∑

n=2

[ n

n2 − 1

∑
i+j=n

(3− γ

2
+

γ

2
ij
)
αiαj

]
Rn−1 = Φ(R) = 1.

This completes the proof of Theorem 3.1. �

4. Remarks

In Sections 2-3 we have found explicit expressions for traveling wave solutions
to (2) with γ > 1 that travel in the positive x-direction with speed c > 0. In
the following, we discuss whether two other equations(the b-family equation and
the modified Camassa-Holm equation) have our solution type. We expect our
non-smooth traveling wave solutions satisfy to the above both equations. Un-
fortunately, their equations does not have our traveling wave solution type.
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Consider the following two other equations which are the b-family equation[11]

ut − utxx + (b+ 1)uux = buxuxx − uuxxx, t > 0, x ∈ R (40)

and the modified Camassa-Holm equation[10]

mt + ((u2 − u2
x)m)x = 0, m = u− uxx, t > 0, x ∈ R. (41)

Moreover, (40) and (41) are equivalent to the following nonlocal form:

ut + ∂x

(
1

2
u2 + p ∗

(
b

2
u2 +

3− b

2
u2
x

))
= 0, t > 0, x ∈ R (42)

and

ut + ∂x

(
1

3
u3 + p ∗

(
2

3
u3 + uu2

x

))
− 1

3
u3
x + p ∗

(
1

3
u3
x

)
= 0, t > 0, x ∈ R.

(43)
We just apply our solution to the b-family equation. Let us substitute our

solution u(t, x) =
∑∞

n=1 βne
−n|x−ct| in (22) to (42). In a similar arguments,

substituting (23) and (24) into (42) gives us
cβ1 =

∞∑
n=2

n

n2 − 1

∑
i+j=n

( b
2
+

3− b

2
ij
)
βiβj ,

cβn =
∑

i+j=n

(
1

2
−

b
2 + (3− b) ij2

n2 − 1

)
βiβj , n ≥ 2.

(44)

Remark 4.1. Since c > 0, (44) implies that βn = 0 for n ≥ 2 and β1 = c or 0.
Therefore, we conclude that (42) have u(t, x) = ce−|x−ct| or u(t, x) = 0. In this
case, our solution recovers the single peakon solution.

Next we also apply our solution to the modified Camass-Holm equation. In a
similar manner, we can plug our solution u(t, x) =

∑∞
n=1 βne

−n|x−ct| into (43).
Then we obtain

cβ1 =

∞∑
n=3

∑
i+j+k=n

(
n( 23 + jk) + ijk

3

n2 − 1

)
βiβjβk,

cβ2 = 0,

cβn =
∑

i+j+k=n

(
1

3
−

2
3 + jk + n( ijk3 )

n2 − 1

)
βiβjβk, for n ≥ 3.

(45)

Remark 4.2. Since c > 0, β1 = ±
√

3c
2 or 0, β2 = 0 and βn = 0 for n ≥ 3.

Hence (45) have a solution u(t, x) = ±
√

3c
2 e

−|x−ct| or u(t, x) = 0. In this case,

our solution also recovers single peakon solution which was obtained in [10].

In the following remark, we explain our solutions fit into the classification
previously studied traveling wave solutions of (1).
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Remark 4.3. In [13], Lenells study our own equation

ut − utxx + 3uux = γ(2uxuxx + uuxxx)

and categorized all weak traveling wave solutions. Our solution corresponds
to his category (f) of Theorem 1 in [13]. He proves the existence of a cuspon
solution with decay, which corresponds to our solution such that

u(t, x) = c
∞∑

n=1

αnR
ne−n|x−ct| = cφ(Re−|x−ct|), c > 0,

where αn and R are defined in (3) and (20).
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