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EXPLICIT MINIMUM POLYNOMIAL, EIGENVECTOR AND

INVERSE FORMULA OF DOUBLY LESLIE MATRIX†
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Abstract. The special form of Schur complement is extended to have a
Schur’s formula to obtains the explicit formula of determinant, inverse, and
eigenvector formula of the doubly Leslie matrix which is the generalized

forms of the Leslie matrix. It is also a generalized form of the doubly
companion matrix, and the companion matrix, respectively. The doubly
Leslie matrix is a nonderogatory matrix.

AMS Mathematics Subject Classification : 15A09, 15A15, 15A18, 65F15,

65F40.
Key words and phrases : Schur complement, Leslie matrix, doubly Leslie
matrix, companion matrix, Toeplitz matrix, nonderogatory matrix, eigen-
value, eigenvector.

1. Introduction

One of the most popular models of population growth is a matrix-based model,
first introduced by P. H. Leslie. In 1945, he published his most famous article
in Biometrika, a journal. The article was entitled, On the use of matrices in
certain population mathematics [1, pp. 117–120]. The Leslie model describes
the growth of the female portion of a population which is assumed to have a
maximum lifespan. The females are divided into age classes all of which span
an equal number of years. Using data about the average birthrates and survival
probabilities of each class, the model is then able to determine the growth of the
population over time, [11, 7].

Chen and Li in [5] asserted that, Leslie matrix models are discrete models
for the development of age-structured populations. It is known that eigenvalues
of a Leslie matrix are important in describing the asymptotic behavior of the
corresponding population model. It is also known that the ratio of the spectral
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radius and the second largest(subdominant) eigenvalue in modulus of a non-
periodic Leslie matrix determines the rate of convergence of the corresponding
population distributions to a stable age distribution.

A Leslie matrix arises in a discrete, age-dependent model for population
growth. It is a matrix of the form

L =



r1 r2 r3 . . . rn−1 rn
s1 0 0 . . . 0 0
0 s2 0 . . . 0 0
...

...
. . .

...
...

0 0 0
. . . 0 0

0 0 0 . . . sn−1 0


, (1)

where rj ≥ 0, 0 < sj ≤ 1, j = 1, 2, . . . , n− 1.
For a given field F, the set of all polynomials in x over F is denoted by F[x].

For a positive integer n, let Mn(F) be the set of all n× n matrices over F. The
set of all vectors, or n × 1 matrices over F is denoted by Fn. A nonzero vector
v ∈ Fn is called an eigenvector of A ∈ Mn(F) corresponding to a scalar λ ∈ F
if Av = λv, and the scalar λ is an eigenvalue of the matrix A. The set of
eigenvalues of A is call the spectrum of A and is denoted by σ(A). In the most
common case in which F = C, the complex numbers, Mn(C) is abbreviated to
Mn.

Doubly companion matrices C ∈ Mn were first introduced by Butcher and
Chartier in [4, pp. 274–276], given by

C =



−α1 −α2 −α3 . . . −αn−1 −αn − βn

1 0 0 . . . 0 −βn−1

0 1 0 . . . 0 −βn−2

...
...

. . .
...

...

0 0 0
. . . 0 −β2

0 0 0 . . . 1 −β1


, (2)

that is, a n× n matrix C with n > 1 is called a doubly companion matrix if its
entries cij satisfy cij = 1 for all entries in the sub-maindiagonal of C and else
cij = 0 for i ̸= 1 and j ̸= n.

We define a doubly Leslie matrix analogous as the doubly companion matrix
by replacing the subdiagonal of the doubly companion matrix by s1, s2, . . . , sn−1

where sj , j = 1, 2, . . . , n − 1, respectively, and denoted by L, that is, a doubly
Leslie matrix is defined to be a matrix as follows

L =



−a1 −a2 −a3 . . . −an−1 −an − bn
s1 0 0 . . . 0 −bn−1

0 s2 0 . . . 0 −bn−2

...
...

. . .
...

...

0 0 0
. . . 0 −b2

0 0 0 . . . sn−1 −b1


, (3)
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where aj , bj ∈ R, the real numbers, j = 1, 2, . . . , n. As the Leslie matrix, we
restriction only sj > 0, j = 1, 2, . . . , n− 1.

For convenience, we can be written the matrix L in a partitioned form as

L =

[
−pT −an − bn
Λ −q

]
(n,n)

where p =


a1
a2
...

an−1

 , q =


bn−1

bn−2

...
b1

 ,

and Λ = diag(s1, s2, . . . , sn−1) is a diagonal matrix of order n− 1.
Note: If we define the doubly Leslie matrix in an another form such as L =[
pT an + bn
Λ q

]
(n,n)

, where all symbols are as above, then some consequence

productions will be complicates forms.
We recall some well-known results from linear algebra and matrix analysis.

Definition 1.1 ([6], Definition 1.3.1). A matrix B ∈ Mn is said to be similar
to a matrix A ∈ Mn if there exists a nonsingular matrix S ∈ Mn such that
B = S−1AS.

Theorem 1.2 ([6], Theorem 1.4.8). Let A,B ∈ Mn, if x ∈ Cn is an eigenvec-
tor corresponding to λ ∈ σ(B) and if B is similar to A via S, then Sx is an
eigenvector of A corresponding to the eigenvalue λ.

Theorem 1.3 ([6], Theorem 3.3.15). A matrix A ∈ Mn is similar to the com-
panion matrix of its characteristic polynomial if and only if the minimal and
characteristic polynomial of A are identical.

Definition 1.4 ([9], p. 664). A matrix A ∈ Mn for which the characteris-
tic polynomial ∆A(x) equal to the minimum polynomial mA(x) are said to be
nonderogatory matrix.

In the present paper we give explicit determinant, inverse matrix, and eigen-
vector formulae for the doubly Leslie matrix and give some related topics.

2. Some Properties of Schur Complement

Let M be a matrix partitioned into four blocks

M =

[
A B
C D

]
(4)

where the submatrix C is assumed to be square and nonsingular. Brezinski in
[3, p.232] asserted that, the Schur complement of C in M , denoted by (M/C),
is defined by

(M/C) = B −AC−1D, (5)

which is related to Gaussian elimination by

M =

[
I AC−1

0 I

] [
0 (M/C)
C D

]
. (6)
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Suppose that B and C are k × k and (n − k) × (n − k) matrices, respectively,
k < n, and C is nonsingular, as in [8, p.39] we have the following theorem.

Theorem 2.1 (Schur’s formula). Let M be a square matrix of order n × n
partitioned as

M =

[
A B
C D

]
,

where B and C are k× k and (n− k)× (n− k) matrices, respectively, k < n. If
C is nonsingular, then

detM = (−1)(n+1)k detC det(M/C). (7)

Proof. From the (6)

M =

[
I AC−1

0 I

] [
0 (M/C)
C D

]
.

The identity (7) follows by taking the determinant of both sides. Then,

detM = det

[
I AC−1

0 I

]
det

[
0 (M/C)
C D

]
.

Since det

[
I AC−1

0 I

]
= 1. Therefore

detM = det

[
0 (M/C)
C D

]
.

By Laplace’s theorem, expansion of det

[
0 (M/C)
C D

]
by the first k rows i.e.,

rows {1, 2, . . . , k}. We have

det

[
0 (M/C)
C D

]
= (−1)(n+1)k detC det(M/C).

Therefore

detM = (−1)(n+1)k detC det(M/C).

This completes the proof. �

The following useful formula, presents the inverse of a matrix in terms of
Schur complements, analogous as in [14, p. 19], we obtain.

Theorem 2.2. Let M be partitioned as in (4) and suppose both M and C are
nonsingular. Then (M/C) is nonsingular and

M−1 =

[
−C−1D (M/C)

−1
C−1 +

(
C−1D (M/C)

−1
AC−1

)
(M/C)

−1 − (M/C)
−1

AC−1

]
. (8)
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Proof. The Schur complements (M/C) is nonsingular by virtue of (7). Under
the given hypotheses, from (6) one checks that

M =

[
I AC−1

0 I

] [
0 (M/C)
C D

]
=

[
I AC−1

0 I

] [
0 (M/C)
C 0

] [
I C−1D
0 I

]
.

Inverting both sides yields

M−1 =

[
I C−1D
0 I

]−1 [
0 (M/C)
C 0

]−1 [
I AC−1

0 I

]−1

=

[
I −C−1D
0 I

] [
0 C−1

(M/C)
−1

0

] [
I −AC−1

0 I

]
=

[
−C−1D (M/C)

−1
C−1

(M/C)
−1

0

] [
I −AC−1

0 I

]

=

[
−C−1D (M/C)

−1
C−1 +

(
C−1D (M/C)

−1
AC−1

)
(M/C)

−1 − (M/C)
−1

AC−1

]
,

from which the identity (8) follows. �

3. Inverse Formula of Doubly Leslie Matrix

The following theorem is follows from Theorem 2.1.

Theorem 3.1 (Determinant of doubly Leslie matrix). Let L be a doubly Leslie

matrix as in (3) with partitioned as L =

[
−pT −an − bn
Λ −q

]
(n,n)

, where p =[
a1 a2 . . . an−1

]T
, q =

[
bn−1 bn−2 . . . b1

]T
, and Λ =

diag(s1, s2, . . . , sn−1), sj > 0, j = 1, 2, . . . , n − 1 is a diagonal matrix of or-
der n− 1, then

detL = (−1)n

(
(an + bn) +

n−1∑
i=1

aibn−i

si

)
n−1∏
i=1

si.

Proof. Since Λ is a (n− 1)× (n− 1) submatrix of the matrix L. Then we apply
the Schur’ formula (7),

detL = (−1)(n+1)×1 detΛdet(L/Λ) (9)

As in (5), the Schur complement of Λ in L, denoted by (L/Λ) , is a 1× 1 matrix
or a scalar

(L/Λ) = (−an − bn)− (−pT )Λ−1(−q)

= (−an − bn)−
[
−a1 −a2 . . . −an−1

]



252 Wiwat Wanicharpichat

×


1/s1 0 . . . 0
0 1/s2 . . . 0
...

...
. . .

...
0 0 . . . 1/sn−1




−bn−1

−bn−2

...
−b2
−b1


= −(an + bn)−

(
a1bn−1

s1
+

a2bn−2

s2
+ · · ·+ an−1b1

sn−1

)
= −(an + bn)−

n−1∑
i=1

aibn−i

si

= −

(
(an + bn) +

n−1∑
i=1

aibn−i

si

)
. (10)

Now, from (9) it is easy to see that detΛ =
n−1∏
i=1

si. Therefore

detL = (−1)(n+1)
n−1∏
i=1

si

{
−

(
(an + bn) +

n−1∑
i=1

aibn−i

si

)}

= (−1)n

(
(an + bn) +

n−1∑
i=1

aibn−i

si

)
n−1∏
i=1

si.

This completes the proof. �

Immediately, we have the following corollaries.

Corollary 3.2. Let L be a Leslie matrix defined as in (1) with partitioned

as L =

[
−pT −an
Λ 0

]
(n,n)

, where p =
[
a1 a2 . . . an−1

]T
, −aj ≥ 0,

j = 1, 2, . . . , n. and Λ = diag(s1, s2, . . . , sn−1), sj > 0, j = 1, 2, . . . , n − 1 is a
diagonal matrix of order n− 1, then

detL = (−1)nan

n−1∏
i=1

si.

Corollary 3.3. Let C =

[
−pT −an − bn
In−1 −q

]
(n,n)

be a doubly companion ma-

trix, where p =
[
a1 a2 . . . an−1

]T
, and q =

[
bn−1 bn−2 . . . b1

]T
,

then

detC = (−1)n

(
(an + bn) +

n−1∑
i=1

aibn−i

)
.
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Corollary 3.4. Let C =

[
−pT −an
In−1 0

]
(n,n)

be a companion matrix, where

p =
[
a1 a2 . . . an−1

]T
, then detC = (−1)nan.

Now we wish to find the inverse of doubly Leslie matrix.

Theorem 3.5. Let L =

[
−pT −an − bn
Λ −q

]
(n,n)

be a doubly Leslie matrix,

where p =
[
a1 a2 . . . an−1

]T
, q =

[
bn−1 bn−2 . . . b1

]T
, and Λ =

diag(s1, s2, . . . , sn−1), where sj > 0, j = 1, 2, . . . , n − 1 is a diagonal matrix of
order n− 1. If detL ̸= 0 then

L−1 = (L/Λ)
−1

[
Λ−1q (L/Λ)Λ−1 +

(
Λ−1qpTΛ−1

)
1 pTΛ−1

]
(n,n)

,

where (L/Λ) = −
(
(an + bn) +

n−1∑
i=1

aibn−i

si

)
, as in (10), and Λ−1 =

diag( 1
s1
, 1
s2
, . . . , 1

sn−1
).

Proof. Apply the identity (8) to the matrix L, we have

L−1 =

[
−Λ−1(−q) (L/Λ)

−1
Λ−1 +

(
Λ−1(−q) (L/Λ)

−1
(−pT )Λ−1

)
(L/Λ)

−1 − (L/Λ)
−1

(−pT )Λ−1

]
(n,n)

=

[
Λ−1q (L/Λ)

−1
Λ−1 +

(
Λ−1q (L/Λ)

−1
pTΛ−1

)
(L/Λ)

−1
(L/Λ)

−1
pTΛ−1

]
(n,n)

.

The Schur complement of Λ in L is (L/Λ), in (10) showed that (L/Λ) is a scalar.
Then

L−1 = (L/Λ)
−1

[
Λ−1q (L/Λ)Λ−1 +

(
Λ−1qpTΛ−1

)
1 pTΛ−1

]
(n,n)

.

�

Immediately, we have the following corollaries.

Corollary 3.6. Let L be a Leslie matrix defined in Corollary 3.2. If detL ̸= 0
then

L−1 = (L/Λ)−1

[
0 (L/Λ)Λ−1

1 pTΛ−1

]
(n,n)

,

where (L/Λ) = −an.

Corollary 3.7. Let C be a doubly companion matrix defined in Corollary 3.3.
If detC ̸= 0 then

C−1 = (C/In−1)
−1

[
q (C/In−1) + qpT

1 pT

]
(n,n)

,
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where (C/In−1) = −
(
(an + bn) +

n−1∑
i=1

aibn−i

)
.

Corollary 3.8. Let C be a companion matrix defined in Corollary 3.4. If
detC ̸= 0 then

C−1 = − 1

an

[
0 −anIn−1

1 pT

]
(n,n)

.

4. Explicit Minimum Polynomial of Doubly Leslie Matrix

The author in [12, Theorem 3.3] asserted that, the doubly companion matrix
is nonderogatory. Now, we wish to show that any doubly Leslie matrix L in (3)
is similar to a companion matrix, that is, it is a nonderogatory.

Theorem 4.1. The doubly Leslie matrix matrix L defined in (3) is nonderoga-
tory and the characteristic polynomial and the explicit minimum polynomial is

mL(x) = xn + (c1 + d1)x
n−1 +

 ∑
i+j=2

cidj + c2 + d2

xn−2 + . . .

+

 ∑
i+j=n−1

cidj + cn−1 + dn−1

x+

 ∑
i+j=n

cidj + cn + dn

 ,

where c1 = a1, ci = ai
i−1∏
k=1

sk, and d1 = b1, di = bi
n−1∏

k=n+1−i

sk, for i = 2, 3, . . . , n.

Proof. Let

L =


−a1 −a2 . . . −an−1 −an − bn
s1 0 . . . 0 −bn−1

0 s2 . . . 0 −bn−2

...
...

. . .
...

...
0 0 . . . sn−1 −b1

 .

Firstly to show that L is similar to a doubly companion matrix.
By a similarity transformation with a diagonal matrix

D = diag

(
1

s1s2 . . . sn−1
,

1

s2s3 . . . sn−1
, . . . ,

1

sn−2sn−1
,

1

sn−1
, 1

)
,

L can be transformed to a doubly companion matrix,

D−1LD =



−a1 −a2s1 . . . −an−1(s1s2 . . . sn−2) −(an + bn)(s1s2s3 . . . sn−1)
1 0 . . . 0 −bn−1(s2s3 . . . sn−1)

0 1 . . . 0 −bn−2(s3 . . . sn−1)
...

. . .
...

...

0 0
. . . 0 −b2sn−1

0 0 . . . 1 −b1

 .
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For convenient, let us denote the doubly companion matrix D−1LD by

D−1LD =



−c1 −c2 −c3 . . . −cn−1 −cn − dn
1 0 0 . . . 0 −dn−1

0 1 0 . . . 0 −dn−2

...
...

. . .
...

...

0 0 0
. . . 0 −d2

0 0 0 . . . 1 −d1


, (11)

where c1 = a1, ci = ai
i−1∏
k=1

sk, and d1 = b1, di = bi
n−1∏

k=n+1−i

sk, for i = 2, 3, . . . , n.

Let J be the backward identity matrix of order n × n(or reversal matrix of
order n× n), J (= J−1), which showing that

J−1(D−1LD)J =



−d1 1 . . . 0 0

−d2 0
. . .

. . . 0
...

...
. . .

. . .
...

−dn−1 0 . . . 0 1
−cn − dn −cn−1 . . . −c2 −c1

 =: Γ. (12)

To show that the matrix Γ is similar to a companion matrix. We shall prove by
explicit construction the existence of an invertible matrix M such that M−1ΓM
is a companion matrix. Now, chosen a matrix M of size n× n,

M =



1 0 0 . . . 0

d1 1 0
. . .

...

d2 d1 1
. . . 0

...
. . .

. . .
. . . 0

dn−1 . . . d2 d1 1


.

Then M is nonsingular matrix. In fact the matrix M is an lower triangular
Toeplitz matrix with diagonal-constant 1, and

M−1 =
[
e1 Γe1 Γ2e1 . . . Γn−1e1

]T
,

where e1 =
[
1 0 . . . 0

]T ∈ Rn is the unit column vector.
Computation shows that

M−1ΓM =



0 1 . . . 0 0

0 0
. . . 0

...
...

. . .
. . .

...
0 0 . . . 0 1

−γn −γn−1 . . . −γ2 −γ1

 =: C,
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where
γ1 = c1 + d1,
γ2 =

∑
i+j=2

cidj + c2 + d2,

...
γn−1 =

∑
i+j=n−1

cidj + cn−1 + dn−1,

γn =
∑

i+j=n

cidj + cn + dn.

(13)

The matrix

C = M−1ΓM = M−1J−1(D−1LDJ)M = (DJM)−1L(DJM) (14)

is the desired companion matrix. Then, we have the doubly Leslie matrix L is
similar to the companion matrix C. By Theorem 1.3, the characteristic polyno-
mial ∆L(x) equal to the minimum polynomial mL(x), we have

mL(x) = xn + γ1x
n−1 + γ2x

n−2 + · · ·+ γn−1x+ γn.

That is

mL(x) = xn + (c1 + d1)x
n−1 +

 ∑
i+j=2

cidj + c2 + d2

xn−2 + . . .

+

 ∑
i+j=n−1

cidj + cn−1 + dn−1

x+

 ∑
i+j=n

cidj + cn + dn

 ,

where c1 = a1, ci = ai
i−1∏
k=1

sk, and d1 = b1, di = bi
n−1∏

k=n+1−i

sk, for i = 2, 3, . . . , n.

�

5. Explicit Eigenvector Formula of Doubly Leslie Matrix

Now analogous as eigenvector of a companion matrix in [2, pp.630–631] and
in [10, p.6], we obtain.

Theorem 5.1. Let λ be an eigenvalue of a doubly Leslie matrix L defined in
(3). Then

v =



1
s1s2...sn−1

(
λn−1 + d1λ

n−2 + d2λ
n−3 + · · ·+ dn−2λ+ dn−1

)
1

s2s3...sn−1

(
λn−2 + d1λ

n−3 + · · ·+ dn−3λ+ dn−2

)
...

1
sn−1

(λ+ d1)

1


is an eigenvector of L corresponding to the eigenvalue λ, where d1 = b1, di =

bi
n−1∏

k=n+1−i

sk, for i = 2, 3, . . . , n.



Explicit Eigenvector and Inverse of Doubly Leslie Matrix 257

Proof. From Theorem 4.1, L is similar to the companion matrix C as in (14).
Then they have the same eigenvalues in common. Let λ be an eigenvalue of L,
then λ also an eigenvalue of C. Since λ is a root of the characteristic polynomial
∆L(x), we have

∆L(λ) = λn + (c1 + d1)λ
n−1 +

 ∑
i+j=2

cidj + c2 + d2

λn−2 + . . .

+

 ∑
i+j=n−1

cidj + cn−1 + dn−1

λ+

 ∑
i+j=n

cidj + cn + dn

 = 0.

From (13), we have,

∆L(λ) = λn + γ1λ
n−1 + γ2λ

n−2 + · · ·+ γn−11λ+ γn = 0.

Therefore

λn = −
(
γ1λ

n−1 + γ2λ
n−2 + · · ·+ γn−11λ+ γn

)
.

Then, we put a vector u =
[
1 λ · · · λn−2 λn−1

]T
. We must show that this

vector u is an eigenvector of C corresponding to the eigenvalue λ. Form equation
(14), C = (DJM)−1L(DJM), we have

Cu =



0 1 . . . 0 0

0 0
. . .

. . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−γn −γn−1 . . . −γ2 −γ1




1
λ
...

λn−2

λn−1



=


λ
λ2

...
λn−1

−γn − γn−1λ− · · · − γ2λ
n−2 − γ1λ

n−1

 =


λ
λ2

...
λn−1

λn



= λ


1
λ
...

λn−2

λn−1

 = λu,

it is easy to see that the first component in the vector u cannot be zero, the
vector u is not a zero-vector, it is an eigenvector of C corresponding to λ.

Since (DJM)−1L(DJM) = C. Theorem 1.2 asserted that (DJM)u is an
eigenvector of L corresponding to the eigenvalue λ. Hence, the explicit form of



258 Wiwat Wanicharpichat

an eigenvector corresponding to an eigenvalue λ of the matrix L is

v := (DJM)u

=



1
s1s2...sn−1

0 . . . 0 0 0

0 1
s2s3...sn−1

. . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 1

sn−2sn−1
0 0

0 0 . . . 0 1
sn−1

0

0 0 . . . 0 0 1



×


0 0 . . . 0 0 1
0 0 . . . 0 1 0
...

...
...

...
...

0 1 . . . 0 0 0
1 0 . . . 0 0 0





1 0 . . . 0 0

d1 1
. . .

...
...

d2 d1
. . . 0 0

...
. . .

. . . 0 0
...

. . .
. . . 1 0

dn−1 . . . d2 d1 1





1
λ
λ2

...
λn−2

λn−1


,

that is

v =



dn−1

s1s2...sn−1

dn−2

s1s2...sn−1

dn−3

s1s2...sn−1
. . . d1

s1s2...sn−1

1
s1s2...sn−1

dn−2

s2s3...sn−1

dn−3

s2s3...sn−1
. .
. d1

s2s3...sn−1

1
s2s3...sn−1

0

dn−3

s3s4...sn−1
. .
.

. .
. 1

s3s4...sn−1
0

...

... . .
.

. .
.

0
... 0

d1
sn−1

1
sn−1

. .
. ... 0 0

1 0 . . . 0 0 0


u

=



1
s1s2...sn−1

(
λn−1 + d1λ

n−2 + d2λ
n−3 + · · ·+ dn−2λ+ dn−1

)
1

s2s3...sn−1

(
λn−2 + d1λ

n−3 + · · ·+ dn−3λ+ dn−2

)
...

1
sn−2sn−1

(
λ2 + d1λ+ d2

)
1

sn−1
(λ+ d1)

1


,

it is easy to see that the last component in the vector v cannot be zero, which
proves the assertion. �

The following corollaries are particular case of Theorem 5.1.
If b1 = b2 = · · · = bn = 0, then the matrix become a Leslie matrix, we have

the following corollary.
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Corollary 5.2. Let λ be an eigenvalue of a Leslie matrix L defined in Corollary
3.2. Then

v =



1
s1s2...sn−1

λn−1

1
s2s3...sn−1

λn−2

...
1

sn−1
λ

1


is an eigenvector of L corresponding to the eigenvalue λ. A nonzero scalar
multiple of v namely

w := (s1s2 . . . sn−1/λ
n−1)v =


1

s1/λ
s1s2/λ

2

...
s1s2 . . . sn−1/λ

n−1


is also an eigenvector of L corresponding to the eigenvalue λ.

If s1 = s2 = · · · = sn = 1, then we have the following corollary, as in [13, pp.
270–272].

Corollary 5.3. Let λ be an eigenvalue of a doubly companion matrix C defined
in Corollary 3.3. Then

v =


λn−1 + b1λ

n−2 + b2λ
n−3 + · · ·+ bn−2λ+ bn−1

λn−2 + b1λ
n−3 + · · ·+ bn−3λ+ bn−2

...
λ+ b1

1


is an eigenvector of C corresponding to the eigenvalue λ.

Corollary 5.4. Let λ be an eigenvalue of a companion matrix C defined in
Corollary 3.4. Then

v =


λn−1

λn−2

...
λ
1


is an eigenvector of C corresponding to the eigenvalue λ.

6. Conclusion

The doubly Leslie matrix is a nonderogatory matrix. This paper has explored
a special form of a Schur complement to obtained the determinant, inverse, and
explicit eigenvector formulas of the doubly Leslie matrix which is the generalized
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forms of the Leslie matrix. It is also a generalized form of the doubly companion
matrix, and the companion matrix, respectively.
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