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VECTOR OPTIMIZATION INVOLVING GENERALIZED

SEMILOCALLY PRE-INVEX FUNCTIONS

SUDHA GUPTA, VANI SHARMA AND MAMTA CHAUDHARY∗

Abstract. In this paper, a vector optimization problem over cones is con-
sidered, where the functions involved are η-semidifferentiable. Necessary
and sufficient optimality conditions are obtained. A dual is formulated and

duality results are proved using the concepts of cone ρ-semilocally preinvex,
cone ρ-semilocally quasi-preinvex and cone ρ-semilocally pseudo-preinvex
functions.
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1. Introduction

Ewing [1] introduced the concept of semilocally convex functions. It was fur-
ther extended to semilocally quasiconvex, semilocally pseudoconvex functions by
Kaul and Kaur [2]. Necessary and sufficient optimality conditions were derived
by Kaul and Kaur [3, 4], and Suneja and Gupta [8].

Weir and Mond [13] considered preinvex functions for multiple objective opti-
mization. Further Weir and Jeyakumar [12] introduced the class of cone-preinvex
functions and obtained optimality conditions and duality theorems for a scalar
and vector valued programs. Weir [11] introduced cone-semilocally convex func-
tions and studied optimality and duality theorems for vector optimization prob-
lems over cones. Preda and Stancu-Minasian [5, 6, 7] studied optimality and
duality results for a fractional programming problem where the functions in-
volved were semilocally preinvex.

In the recent years Suneja et al. [9] introduced the concepts of ρ-semilocally
preinvex and related functions and obtained optimality and duality for mul-
tiobjective non-linear programming problem, Suneja and Bhatia [10] defined
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cone-semilocally preinvex and related functions. They obtained necessary and
sufficient optimality conditions for a vector optimization problem over cones.
In this paper, we have defined cone ρ-semilocally preinvex, cone ρ-semilocally
quasipreinvex, cone ρ-semilocally pseudopreinvex functions and established nec-
essary and sufficient optimality conditions for a vector optimization problem
over cones.

2. Definitions and Preliminaries

Let S ⊆ Rn and η : S × S → Rn and θ : S × S → Rn be two vector valued
functions.

Definition 2.1. The set S ⊆ Rn is said to be η-locally star shaped set at
x∗ ∈ S if for each x ∈ S there exists a positive number aη(x, x

∗) ≤ 1 such that
x∗ + λη(x, x∗) ∈ S, for 0 ≤ λ ≤ aη(x, x

∗).

Definition 2.2 ([10]). Let S ⊆ Rn be an η-locally star shaped set at x∗ ∈ S
and K ⊆ Rm be a closed convex cone with non-empty interior. A vector valued
function f : S → Rm is said to be K-semilocally preinvex (K-Slpi) at x∗ with
respect to η if corresponding to x∗ and each x ∈ S, there exist a positive number
dη(x, x

∗) ≤ aη(x, x
∗) ≤ 1 such that

λf(x) + (1− λ)f(x∗)− f(x∗ + λη(x, x∗)) ∈ K, for 0 < λ < dη(x, x
∗).

We now introduce ρ semilocally preinvex functions over cones.

Definition 2.3. Let S ⊆ Rn be an η-locally star shaped set at x∗ ∈ S, ρ ∈ Rm

and K ⊆ Rm be a closed convex cone with nonempty interior. A vector valued
function f : S → Rm is said to be ρ-semilocally preinvex over K(kρ-Slpi) at
x∗ ∈ S with respect to η if corresponding to x∗ and each x ∈ S, there exists a
positive number dη(x, x

∗) ≤ aη(x, x
∗) ≤ 1 such that

λf(x) + (1− λ)f(x∗)− f(x∗ + λη(x, x∗))− ρλ(1− λ)∥θ(x, x∗)∥2 ∈ K,

for 0 < λ < dη(x, x
∗).

Remark 2.1. If ρ = 0 the definition of Kρ-Slpi function reduces to that of
K-slpi function given by Suneja and Meetu [10].

If K = R+, the definition of Kρ-slpi function reduces to that of ρ-slpi function
given by Suneja et al. [9]. In addition if η(x, x∗) = x− x∗ then Kρ-semilocally
preinvex functions reduces to K-semilocally convex functions defined by Weir
[11].

We now give an example of a function which is Kρ-slpi but fails to be ρ-slpi.

Example 2.1. We consider the following η-locally star shaped set as given by
Suneja and Meetu [10]. Let S = R \ E, where

E =

[
−1

2
,
1

2

]
∪ {2}
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η(x, x∗) =


x− x∗, x, x∗ >

1

2
, x ̸= 2, x∗ ̸= 2, or x, x∗ < −1

2

x∗ − x, x >
1

2
, x ̸= 2, x∗ < −1

2
or x∗ >

1

2
, x∗ ̸= 2, x < −1

2

aη(x, x
∗) =



∣∣∣∣ 2− x∗

x− x∗

∣∣∣∣ , if
1

2
< x∗ < 2, 2 < x or

1

2
< x∗ < 2, x < −1

2

x∗ − 2

x∗ − x
, if 2 < x∗,

1

2
< x < 2

1, otherwise.

θ(x, x∗) = x− x∗

Consider the function f : S → R2 defined by

f(x) =


(x, 0), x >

1

2

(0,−x), x < −1

2
.

Let ρ = (−1,−1) and K = {(x, y) : x ≥ 0, y ≤ x}.
Then f is Kρ-slpi at x∗ = −1. But f is not ρ-slpi because for x = 1, λ =

1

2
,

λf(x) + (1− λ)f(x∗)− f(x∗ + λη(x, x∗))− ρλ(1− λ)∥θ(x, x∗)∥2 =

(
3

2
,−1

2

)
� (0, 0).

Definition 2.4. The function f : S → Rm is said to be η-semidifferentiable at
x∗ ∈ S if

(df)+(x∗, η(x, x∗)) = lim
λ→0+

1

λ
[f(x∗ + λη(x, x∗))− f(x∗)]

exists for each x ∈ S.

Theorem 2.1. If f is Kρ-Slpi at x∗ then

f(x)− f(x∗)− (df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 ∈ K, for all x ∈ S.

Proof. Since the function f is Kρ-slpi at x∗ with respect to η therefore corre-
sponding to each x ∈ S there exists a positive number

dη(x, x
∗) ≤ aη(x, x

∗) ≤ 1

such that

λf(x) + (1− λ)f(x∗)− f(x∗ + λη(x, x∗))− ρλ(1− λ)∥θ(x, x∗)∥2 ∈ K,

for 0 < λ < dη(x, x
∗),

which implies

f(x)− f(x∗)− 1

λ
[f(x∗ + λη(x, x∗))− f(x∗)]− ρ(1− λ)∥θ(x, x∗)∥2 ∈ K,

for 0 < λ < dη(x, x
∗).
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Since K is a closed cone, therefore by taking limit as λ → 0+, we get

f(x)− f(x∗)− (df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 ∈ K, for all x ∈ S. �

We now introduce Kρ-semilocally naturally quasi preinvex (Kρ-slnqpi) over
cones.

Definition 2.5. The function f is said to be Kρ-semilocally naturally quasi
preinvex (Kρ-Slnqpi) at x∗ with respect to η if

−(f(x)− f(x∗)) ∈ K ⇒ −(df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 ∈ K .

Theorem 2.2. If f is Kρ-slpi at x∗ ∈ S with respect to η then f is Kρ-slnqpi
at x∗ with respect to same η.

Proof. Let f be Kρ-slpi at x∗, then there exists a positive number dη(x, x
∗) ≤

aη(x, x
∗) such that

λf(x) + (1− λ)f(x∗)− f(x∗ + λη(x, x∗))− ρλ(1− λ)∥θ(x, x∗)∥2 ∈ K,

for 0 < λ < dη(x, x
∗).

(2.1)

Suppose that

−(f(x)− f(x∗)) ∈ K

then

−λ(f(x)− f(x∗)) ∈ K, for λ > 0. (2.2)

Adding (2.1) and (2.2) we get

− [f(x∗ + λη(x, x∗))− f(x∗)]− ρλ(1− λ)∥θ(x, x∗)∥2 ∈ K, for 0 < λ < dη(x, x
∗).

⇒− 1

λ
[f(x∗ + λη(x, x∗))− f(x∗)]− ρ(1− λ)∥θ(x, x∗)∥2 ∈ K, for 0 < λ < dη(x, x

∗).

Since K is a closed cone, therefore taking limit as λ → 0+, we get

−(df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 ∈ K.

Thus

− (f(x)− f(x∗)) ∈ K

⇒ − (df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 ∈ K, for x ∈ S. �

But the converse is not true as shown in the following example.

Example 2.2. Consider set S = R/E, where E =

[
−1

2
,
1

2

]
∪ {2}. Then as

discussed in Example 2.1, S is η-locally star shaped.
Consider the function f : S → R2 defined by

f(x) =


(−x2, 0), x < −1

2

(0,−x), x >
1

2
.
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θ(x, x∗) = x− x∗ .

Then function f is Kρ-slnqpi at x∗ = −2, for ρ = (1, 0), where

k = {(x, y)|y ≤ 0, y ≥ x},

because

− (f(x)− f(x∗)) ∈ K ⇒ −2 ≤ x < −1

2

⇒ − (df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 = (−4(x+ 2)− (x+ 2)2, 0) ∈ K .

But the function f fails to be kρ-slpi at x∗ = −2 by Theorem 2.1 because for
x = 1,

f(x)− f(x∗)− (df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 = (7,−1) /∈ K .

Definition 2.6. The function f : S → Rm is said to be Kρ-semilocally quasi
preinvex (Kρ-slqpi) at x∗ with respect to η if

f(x)− f(x∗) /∈ intK ⇒ −(df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 ∈ K, for x ∈ S .

Remark 2.2. The following diagram illustrates the relation among Kρ-slpi
function, Kρ-slnqpi and Kρ-slqpi functions.

Figure 1

We now give an example of a function which is Kρ-slnqpi but fails to be
kρ-slqpi.

Example 2.3. The function f considered in Example 2.2 is Kρ-slnqpi at x∗ =
−2. But fails to be Kρ-slqpi at x∗ = −2 because for x = 1

f(x)− f(x∗) = (4,−1) /∈ intK,

but

−(df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 = (3, 0) /∈ K .

The next definition introduces cone semilocally pseudo preinvex functions
over cone.

Definition 2.7. The function f : S → Rm is said to be Kρ-semilocally pseudo
preinvex (Kρ-slppi) at x∗, with respect to η if

− (df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 /∈ intK ⇒ −(f(x)− f(x∗)) /∈ intK.
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3. Optimality Conditions

Consider the following Vector Optimization Problem

(VOP) K-minimize f(x)

subject to − g(x) ∈ Q

where f : S → Rm and g : S → Rp are η-semidifferentiable functions with
respect to same η and S ⊆ Rn is a nonempty η-locally star shaped set.

Let K ⊆ Rm and Q ⊆ Rp be closed convex cones having non-empty interior
and let X = {x ∈ S : −g(x) ∈ Q} be the set of all feasible solutions of (VOP).

Definition 3.1. A point x∗ ∈ X is called

(i) a weak minimum of (VOP), if for all x ∈ X, f(x∗)− f(x) /∈ intK .
(ii) a minimum of (VOP), if for all x ∈ X, f(x∗)− f(x) /∈ K \ {0} .
(iii) a strong minimum of (VOP), if for all x ∈ X, f(x)− f(x∗) ∈ K .

We will use the following Alternative Theorem given by Weir and Jeyakumar
[12].

Theorem 3.1. Let X, Y be real normed linear spaces and K be a closed convex
cone in Y with nonempty interior, let S ⊆ X. Suppose that f : S → Y be
K-preinvex. Then exactly one of the following holds:

(i) there exists x ∈ S such that −f(x) ∈ intK,
(ii) there exists 0 ̸= p ∈ K∗ such that (pT f)(S) ⊆ R+,

where int denotes interior and K∗ is the dual cone of K.

We now establish the necessary optimality conditions for (VOP).

Theorem 3.2 (Fritz John Type Necessary Optimality Conditions). Let x∗ ∈ X
be a weak minimum of (VOP) and suppose (df)+(x∗, η(x, x∗)) and (dg)+(x∗, η(x, x∗))
are K-preinvex and Q-preinvex functions of x respectively with respect to same
η(x, x∗) and η(x∗, x∗) = 0 then there exists τ∗ ∈ K∗, µ∗ ∈ Q∗ such that

τ∗T (df)+(x∗, η(x, x∗)) + µ∗T (dg)+(x∗, η(x, x∗)) ≥ 0, for all x ∈ S. (3.1)

µ∗T g(x∗) = 0. (3.2)

Proof. We assert that the system

−F (x) ∈ int(K ×Q) (3.3)

has no solution x ∈ S, where

F (x) = ((df)+(x∗, η(x, x∗)), (dg)+(x∗, η(x, x∗)) + g(x∗)).

If possible, let there be a solution x0 ∈ S of (3.3). Then

− F (x0) ∈ int(K ×Q) ⇒ −(df)+(x∗, η(x0, x∗)) ∈ intK

and

−(dg)+(x∗, η(x0, x∗))− g(x∗) ∈ intQ.
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Since S is locally star shaped and x∗, x0 ∈ S, therefore we can find λ0 > 0 such
that for λ ∈ (0, λ0),

x∗ + λη(x0, x∗) ∈ S.

By definition of (df)+(x∗, η(x, x∗)) and (dg)+(x∗, η(x, x∗)), it follows that

−[f(x∗ + λη(x0, x∗))− f(x∗)] ∈ intK

and

− [g(x∗ + λη(x0, x∗))− g(x∗)]− g(x∗) ∈ intQ.

⇒ f(x∗)− f(x∗ + λη(x0, x∗)) ∈ intK

and

−g(x∗ + λη(x0, x∗)) ∈ intQ, for λ ∈ (0, λ0),

which is a contradiction as x∗ is a weak minimum of (VOP). Hence the system
(3.3) has no solution x ∈ S.

Also F is (K×Q) preinvex on S as (df)+(x∗, η(x, x∗)) and (dg)+(x∗, η(x, x∗))
are K-preinvex and Q-preinvex on S respectively. Therefore, by Theorem 3.1,
there exists τ∗ ∈ K∗ and µ∗ ∈ Q∗ not both zero such that

τ∗T (df)+(x∗, η(x, x∗)) + µ∗T ((dg)+(x∗, η(x, x∗)) + g(x∗)) ≥ 0, for all x ∈ S. (3.4)

Taking x = x∗, we get

µ∗T g(x∗) ≥ 0. (3.5)

Also µ∗ ∈ Q∗ and −g(x∗) ∈ Q, implies that

µ∗T g(x∗) ≤ 0. (3.6)

From (3.5) and (3.6), we get

µ∗T g(x∗) = 0.

From (3.4), we get

τ∗T (df)+(x∗, η(x, x∗)) + µ∗T (dg)+(x∗, η(x, x∗)) ≥ 0, for all x ∈ S. �

We use the following Slater type constraint qualification to prove the Kuhn-
Tucker type necessary optimality conditions for (VOP).

Definition 3.2. The function g is said to satisfy Slater type constraint qualifica-
tion at x∗ if g is Q-preinvex at x∗ and there exists x̂ ∈ S such that −g(x̂) ∈ intQ.

Theorem 3.3 (Kuhn Tucker Type Necessary Optimality Conditions). Let x∗ ∈ X
be a weak minimum of (VOP) and suppose (df)+(x∗, η(x, x∗)) and (dg)+(x∗, η(x, x∗))

are K-preinvex and Q-preinvex functions of x respectively with respect to the
same η(x, x∗). Suppose that g is Q-slpi at x∗ and g satisfies Slater type con-
straint qualification at x∗ and η(x∗, x∗) = 0, then there exists 0 ̸= τ∗ ∈ K∗,
µ∗ ∈ Q∗ such that (3.1) and (3.2) hold.
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Proof. Since x∗ is a weak minimum of (VOP), therefore by Theorem 3.2, there
exist τ∗ ∈ K∗, µ∗ ∈ Q∗ such that (3.1) and (3.2) hold.
If possible, let τ∗ = 0, then from (3.1), we get

µ∗T (dg)+(x∗, η(x, x∗)) ≥ 0, for all x ∈ S. (3.7)

Since g is Q-slpi at x∗, therefore we have

g(x)− g(x∗)− (dg)+(x∗, η(x, x∗)) ∈ Q, for all x ∈ S.

⇒ µ∗T (g(x)− g(x∗)− (dg)+(x∗, η(x, x∗))) ≥ 0, for all x ∈ S. (3.8)

Adding (3.7) and (3.8) and using (3.2), we get

µ∗T g(x) ≥ 0, for all x ∈ S. (3.9)

Again by Slater type constraint qualification, there exists x̂ ∈ S such that

− g(x̂) ∈ intQ ⇒ µ∗T g(x̂) < 0,

which is a contradiction to (3.9). Hence τ∗ ̸= 0. �
Now we will establish some sufficient conditions for (VOP).

Theorem 3.4. If x∗ ∈ X, f is Kρ-slpi and g is Qσ-slpi at x∗ and there exist
0 ̸= τ∗ ∈ K∗ and µ∗ ∈ Q∗ satisfying the conditions (3.1) and (3.2), then x∗ is a
weak minimum of (VOP) provided

τ∗T ρ+ µ∗Tσ ≥ 0.

Proof. Suppose that x∗ is not a weak minimum of (VOP), then there exists
x ∈ X such that

f(x∗)− f(x) ∈ intK .

Since 0 ̸= τ∗ ∈ K∗, it follows that

τ∗T (f(x∗)− f(x)) > 0 . (3.10)

Since f is Kρ-slpi and g is Qσ-slpi at x∗, therefore

f(x)− f(x∗)− (df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 ∈ K

and

g(x)− g(x∗)− (dg)+(x∗, η(x, x∗))− σ∥θ(x, x∗)∥2 ∈ Q.

⇒ τ∗T (f(x)− f(x∗))

≥ τ∗T (df)+(x∗, η(x, x∗)) + τ∗T ρ∥θ(x, x∗)∥2

≥ −µ∗T (dg)+(x∗, η(x, x∗)) + τ∗T ρ∥θ(x, x∗)∥2

≥ −µ∗T (dg)+(x∗, η(x, x∗))− µ∗Tσ∥θ(x, x∗)∥2

≥ −µ∗T (g(x)− g(x∗))

= −µ∗T g(x)

≥ 0,
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which contradicts (3.10). �

Theorem 3.5. Let x ∈ X. If there exist 0 ̸= τ∗ ∈ K∗, µ∗ ∈ Q∗ satisfying the
conditions (3.1) and (3.2), g is Qσ-slqpi at x∗ and f is Kρ-slppi at x∗ then x∗

is a weak minimum of (VOP) provided

τ∗T ρ+ µ∗Tσ ≥ 0 .

Proof. Let x ∈ X and suppose µ∗ ̸= 0. Then −g(x) ∈ Q implies that

µ∗T g(x) ≤ 0.

From condition (3.2), it follows that

µ∗T (g(x)− g(x∗)) ≤ 0,

which gives that

g(x)− g(x∗) /∈ intQ.

Also g is Qσ-slqpi at x∗, therefore, we get

− (dg)+(x∗, η(x, x∗))− σ∥θ(x, x∗)∥2 ∈ Q,

⇒ µ∗T (dg)+(x∗, η(x, x∗)) + µ∗Tσ∥θ(x, x∗)∥2 ≤ 0.

⇒ µ∗Tσ∥θ(x, x∗)∥2 ≤ −µ∗T (dg)+(x∗, η(x, x∗)).

If µ∗ = 0, then the above inequality holds trivially.
On using (3.1), we have

τ∗T (df)+(x∗, η(x, x∗)) ≥ µ∗Tσ∥θ(x, x∗)∥2 ≥ −τ∗T ρ∥θ(x, x∗)∥2.
⇒ − τ∗T ((df)+(x∗, η(x, x∗)) + ρ∥θ(x, x∗)∥2) ≤ 0.

⇒ − (df)+(x∗, η(x, x∗))− ρ∥θ(x, x∗)∥2 /∈ intK.

Since f is Kρ-slppi at x∗, we get

− (f(x)− f(x∗)) /∈ intK ⇒ f(x∗)− f(x) /∈ intK.

Thus x∗ is a weak minimum of (VOP). �

4. Duality

We associate the following Mond-Weir type dual with (VOP),

(VOD) K-maximize f(u)

subject to

τT (df)+(u, η(x, u)) + µT (dg)+(u, η(x, u)) ≥ 0, for all x ∈ X, (4.1)

µT g(u) ≥ 0,

u ∈ S, 0 ̸= τ ∈ K∗, µ ∈ Q∗.
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Theorem 4.1 (Weak Duality). Let x ∈ X and (u, τ, µ) be dual feasible, suppose
f is Kρ-slppi and g is Qσ-slqpi at u then

f(u)− f(x) /∈ intK,

provided τρ+ µσ ≥ 0.

Proof. Since x ∈ X and (u, τ, µ) is dual feasible, therefore, we get

µT (g(x)− g(u)) ≤ 0.

If µ ̸= 0, then the above inequality gives

g(x)− g(u) /∈ intQ.

Since g is Qσ-slqpi at u, we get

− (dg)+(u, η(x, u))− σ∥θ(x, u)∥2 ∈ Q.

⇒ µT (dg)+(u, η(x, u)) + µTσ∥θ(x, u)∥2 ≤ 0 .

If µ = 0, then the above inequality holds trivially. Now using (4.1), we get

µTσ∥θ(x, u)∥2 ≤ −µT (dg)+(u, η(x, u)) ≤ τT (df)+(u, η(x, u))

⇒ τT (df)+(u, η(x, u)) ≥ µTσ∥θ(x, u)∥2 ≥ −τT ρ∥θ(x, u)∥2.
⇒ − τT (df)+(u, η(x, u)) + ρ∥θ(x, u)∥2 ≤ 0.

⇒ − (df)+(u, η(x, u))− ρ∥θ(x, u)∥2 /∈ intK.

Since f is Kρ-slppi at u, we get

− (f(x)− f(u)) /∈ intK ⇒ (f(u)− f(x)) /∈ intK.

Thus u is a weak minimum of (VOD). �

Theorem 4.2 (Strong Duality). Let x∗ be a weak minimum of (VOP),
(df)+(u, η(x, u)) be K-preinvex and (dg)+(u, η(x, u)) be Q-preinvex functions
on S. Suppose slater type constraint qualification holds at x∗. Then there exist
0 ̸= τ∗ ∈ K∗, µ∗ ∈ Q∗ such that (x∗, τ∗, µ∗) is feasible for (VOD). Moreover,
if for each feasible (u, τ, µ) of (VOD), hypothesis of above theorem holds then
(x∗, τ∗, µ∗) is a weak maximum of (VOD).

Proof. Since all the conditions of Theorem 3.3 hold, therefore, there exist 0 ̸=
τ∗ ∈ K∗, µ∗ ∈ Q∗ such that (3.1) and (3.2) hold. This implies that (x∗, τ∗, µ∗) is
feasible for (VOD). If possible let (x∗, τ∗, µ∗) be not a weak maximum of (VOD),
then there exists (u, τ, µ) feasible for (VOD) such that

f(u)− f(x∗) ∈ intK.

But this is a contradiction to weak duality result as x∗ ∈ X and (u, τ, µ) is
feasible for (VOD). Hence (x∗, τ∗, µ∗) must be a weak maximum of (VOD). �
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