References
- Bossaerts, P., Hafner, C. and Hardle, W. (1996). A new method for volatility estimation with applications in foreign exchange rate series. In G. Bol, G. Nakhaeizadeh, and K. H. Vollmer (Eds.), Finanzmarktanalyse und -prognose mit innovativen quantitativen Verfahren (71-83), Physica-Verlag, Heidelberg.
- Franke, J., Kreiss, J.-P. and Mammen, E. (2002). Bootstrap of kernel smoothing in nonlinear time series, Bernoulli, 8, 1-37.
- Franke, J., Neumann, M. H. and Stockis, J. P. (2004). Bootstrapping nonparametric estimators of the volatility function, Journal of Econometrics, 118, 189-218. https://doi.org/10.1016/S0304-4076(03)00140-4
-
Goncalves, S. and Kilian, L. (2007). Asymptotic and bootstrap inference for AR(
${\infty}$ ) processes with conditional heteroscedasticity, Econometric Reviews, 26, 609-641. https://doi.org/10.1080/07474930701624462 - Hafner, C. (1998). Nonlinear Time Series Analysis with Applications to Foreign Exchange Rate Volatility, Physica Verlag, Heidelberg.
- Hardle, W. and Tsybakov, A. (1997). Local polynomial estimation of the volatility function in non-parametric autoregression, Journal of Econometrics, 81, 223-242. https://doi.org/10.1016/S0304-4076(97)00044-4
- Hwang, E. and Shin, D.W. (2011). Stationary bootstrapping for non-parametric estimator of nonlinear autoregressive model, Journal of Time Series Analysis, 32, 292-303. https://doi.org/10.1111/j.1467-9892.2010.00699.x
-
Hwang, E. and Shin, D. W. (2012). Stationary bootstrap for kernel density estimators under
${\psi}$ -weak dependence, Computational Statistics and Data Analysis, 56, 1581-1593. https://doi.org/10.1016/j.csda.2011.10.001 - Hwang, E. and Shin, D. W. (2013a). Stationary bootstrapping realized volatility under market microstructure noise, Electronic Journal of Statistics, 7, 2032-2053. https://doi.org/10.1214/13-EJS834
- Hwang, E. and Shin, D. W. (2013b). Stationary bootstrapping realized volatility, Statistics & Probability Letters, 83, 2045-2051. https://doi.org/10.1016/j.spl.2013.05.005
- Kreiss, J.-P., Neumann, M. H. and Yao, Q. (2008). Bootstrap tests for simple structures in nonparametric time series regression, Statistics and Its Interface, 1, 367-380. https://doi.org/10.4310/SII.2008.v1.n2.a13
- Kreiss, J.-P. and Paparoditis, E. (2011). Bootstrap methods for dependent data: A review, Journal of the Korean Statistical Society, 40, 357-378. https://doi.org/10.1016/j.jkss.2011.08.009
- Paparoditis, E. and Politis, D. N. (2005). Bootstrapping unit root tests for autoregressive time series, Journal of the American Statistical Association, 100, 545-553. https://doi.org/10.1198/016214504000001998
- Parker, C., Paparoditis, E. and Politis, D. N. (2006). Unit root testing via the stationary bootstrap, Journal of Econometrics, 133, 601-638. https://doi.org/10.1016/j.jeconom.2005.06.008
- Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap, Journal of the American Statistical Association, 89, 1303-1313. https://doi.org/10.1080/01621459.1994.10476870
- Robinson, P. M. (1983). Nonparametric estimation for time series models, Journal of Time Series Analysis, 4, 185-208. https://doi.org/10.1111/j.1467-9892.1983.tb00368.x
- Shimizu, K. (2013). The bootstrap does not always work for heteroscedastic models, Statistics & Risk Modeling, 30, 189-204.
- Shimizu, K. (2014). ). Bootstrapping the nonparametric ARCH regression model, Statistics & Probability Letters, 87, 61-69. https://doi.org/10.1016/j.spl.2014.01.002
- D. W. and Hwang, E. (2013). Stationary bootstrapping for cointegrating regressions, Statistics & Probability Letters, 83, 474-480. https://doi.org/10.1016/j.spl.2012.10.007
- Swensen, A. R. (2003). Bootstrapping unit root tests for integrated processes, Journal of Time Series Analysis, 24, 99-126. https://doi.org/10.1111/1467-9892.00295
Cited by
- Bootstrap methods for long-memory processes: a review vol.24, pp.1, 2017, https://doi.org/10.5351/CSAM.2017.24.1.001