DOI QR코드

DOI QR Code

Stationary Bootstrapping for the Nonparametric AR-ARCH Model

  • Shin, Dong Wan (Department of Statistics, Ewha Womans University) ;
  • Hwang, Eunju (Department of Applied Statistics, Gachon University)
  • Received : 2015.05.19
  • Accepted : 2015.07.29
  • Published : 2015.09.30

Abstract

We consider a nonparametric AR(1) model with nonparametric ARCH(1) errors. In order to estimate the unknown function of the ARCH part, we apply the stationary bootstrap procedure, which is characterized by geometrically distributed random length of bootstrap blocks and has the advantage of capturing the dependence structure of the original data. The proposed method is composed of four steps: the first step estimates the AR part by a typical kernel smoothing to calculate AR residuals, the second step estimates the ARCH part via the Nadaraya-Watson kernel from the AR residuals to compute ARCH residuals, the third step applies the stationary bootstrap procedure to the ARCH residuals, and the fourth step defines the stationary bootstrapped Nadaraya-Watson estimator for the ARCH function with the stationary bootstrapped residuals. We prove the asymptotic validity of the stationary bootstrap estimator for the unknown ARCH function by showing the same limiting distribution as the Nadaraya-Watson estimator in the second step.

Keywords

References

  1. Bossaerts, P., Hafner, C. and Hardle, W. (1996). A new method for volatility estimation with applications in foreign exchange rate series. In G. Bol, G. Nakhaeizadeh, and K. H. Vollmer (Eds.), Finanzmarktanalyse und -prognose mit innovativen quantitativen Verfahren (71-83), Physica-Verlag, Heidelberg.
  2. Franke, J., Kreiss, J.-P. and Mammen, E. (2002). Bootstrap of kernel smoothing in nonlinear time series, Bernoulli, 8, 1-37.
  3. Franke, J., Neumann, M. H. and Stockis, J. P. (2004). Bootstrapping nonparametric estimators of the volatility function, Journal of Econometrics, 118, 189-218. https://doi.org/10.1016/S0304-4076(03)00140-4
  4. Goncalves, S. and Kilian, L. (2007). Asymptotic and bootstrap inference for AR(${\infty}$) processes with conditional heteroscedasticity, Econometric Reviews, 26, 609-641. https://doi.org/10.1080/07474930701624462
  5. Hafner, C. (1998). Nonlinear Time Series Analysis with Applications to Foreign Exchange Rate Volatility, Physica Verlag, Heidelberg.
  6. Hardle, W. and Tsybakov, A. (1997). Local polynomial estimation of the volatility function in non-parametric autoregression, Journal of Econometrics, 81, 223-242. https://doi.org/10.1016/S0304-4076(97)00044-4
  7. Hwang, E. and Shin, D.W. (2011). Stationary bootstrapping for non-parametric estimator of nonlinear autoregressive model, Journal of Time Series Analysis, 32, 292-303. https://doi.org/10.1111/j.1467-9892.2010.00699.x
  8. Hwang, E. and Shin, D. W. (2012). Stationary bootstrap for kernel density estimators under ${\psi}$-weak dependence, Computational Statistics and Data Analysis, 56, 1581-1593. https://doi.org/10.1016/j.csda.2011.10.001
  9. Hwang, E. and Shin, D. W. (2013a). Stationary bootstrapping realized volatility under market microstructure noise, Electronic Journal of Statistics, 7, 2032-2053. https://doi.org/10.1214/13-EJS834
  10. Hwang, E. and Shin, D. W. (2013b). Stationary bootstrapping realized volatility, Statistics & Probability Letters, 83, 2045-2051. https://doi.org/10.1016/j.spl.2013.05.005
  11. Kreiss, J.-P., Neumann, M. H. and Yao, Q. (2008). Bootstrap tests for simple structures in nonparametric time series regression, Statistics and Its Interface, 1, 367-380. https://doi.org/10.4310/SII.2008.v1.n2.a13
  12. Kreiss, J.-P. and Paparoditis, E. (2011). Bootstrap methods for dependent data: A review, Journal of the Korean Statistical Society, 40, 357-378. https://doi.org/10.1016/j.jkss.2011.08.009
  13. Paparoditis, E. and Politis, D. N. (2005). Bootstrapping unit root tests for autoregressive time series, Journal of the American Statistical Association, 100, 545-553. https://doi.org/10.1198/016214504000001998
  14. Parker, C., Paparoditis, E. and Politis, D. N. (2006). Unit root testing via the stationary bootstrap, Journal of Econometrics, 133, 601-638. https://doi.org/10.1016/j.jeconom.2005.06.008
  15. Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap, Journal of the American Statistical Association, 89, 1303-1313. https://doi.org/10.1080/01621459.1994.10476870
  16. Robinson, P. M. (1983). Nonparametric estimation for time series models, Journal of Time Series Analysis, 4, 185-208. https://doi.org/10.1111/j.1467-9892.1983.tb00368.x
  17. Shimizu, K. (2013). The bootstrap does not always work for heteroscedastic models, Statistics & Risk Modeling, 30, 189-204.
  18. Shimizu, K. (2014). ). Bootstrapping the nonparametric ARCH regression model, Statistics & Probability Letters, 87, 61-69. https://doi.org/10.1016/j.spl.2014.01.002
  19. D. W. and Hwang, E. (2013). Stationary bootstrapping for cointegrating regressions, Statistics & Probability Letters, 83, 474-480. https://doi.org/10.1016/j.spl.2012.10.007
  20. Swensen, A. R. (2003). Bootstrapping unit root tests for integrated processes, Journal of Time Series Analysis, 24, 99-126. https://doi.org/10.1111/1467-9892.00295

Cited by

  1. Bootstrap methods for long-memory processes: a review vol.24, pp.1, 2017, https://doi.org/10.5351/CSAM.2017.24.1.001