참고문헌
- Bottani, E. and Montanari, R. (2010), Supply Chain Cesign and Cost Analysis through Simulation, International Journal of Production Research, 48(10), 2859-2886. https://doi.org/10.1080/00207540902960299
- Cannella, S. (2013), Supply Chain Simulation : A System Dynamics Approach for Improving Performance, Transportation Journal, 52(1), 144-146. https://doi.org/10.5325/transportationj.52.1.0144
- Chatfield, D. C. (2013), Underestimating the Bullwhip Effect : A Simulation Study of the Decomposability Assumption, International Journal of Production Research, 51(1), 230-244. https://doi.org/10.1080/00207543.2012.660576
- Finke, G. R., Singh, M., and Schonsleben, P. (2012), Production Lead Time Variability Simulation-Insights from a Case Study, International Journal of Industrial Engineering-Theory Applications and Practice, 19(5), 213-220.
- Harrison, J. R., Lin, Z., Carroll, G. R., and Carley, K. M. (2007), Simulation Modeling in Organizational and Management Research, Academy of Management Review, 32(4), 1229-1245. https://doi.org/10.5465/AMR.2007.26586485
- Hilletofth, P. and Lattila, L. (2012), Agent Based Decision Support in the Supply Chain Context, Industrial Management and Data Systems, 112 (8-9), 1217-1235. https://doi.org/10.1108/02635571211264636
- Hussain, M., Drake, P. R., and Lee, D. M. (2012), Quantifying the Impact of a Supply Chain's Design Parameters on the Bullwhip Effect Using Simulation and Taguchi Design of Experiments, International Journal of Physical Distribution and Logistics Management, 42(10), 947-968. https://doi.org/10.1108/09600031211281448
- Hussain, M. and Saber, H. (2012), Exploring the Bullwhip Effect Using Simulation and Taguchi Experimental Design, International Journal of Logistics-Research and Applications, 15(4), 231-249. https://doi.org/10.1080/13675567.2012.710599
- Iannone, R., Miranda, S. and Riemma, S. (2007), Supply Chain Distributed Simulation : An Efficient Architecture for Multi-Model Synchronization, Simulation Modelling Practice and Theory, 15(3), 221-236. https://doi.org/10.1016/j.simpat.2006.10.004
- Jetly, G., Rossetti, C. L., and Handfield, R. (2012), A Multi-Agent Simulation of the Pharmaceutical Supply Chain, Journal of Simulation, 6(4), 215-226. https://doi.org/10.1057/jos.2011.26
- Kumar, S., McCreary, M. L., and Nottestad, D. A. (2011), Quantifying Supply Chain Trade-Offs Using Six Sigma, Simulation, and Designed Experiments to Develop a Flexible Distribution Network, Quality Engineering, 23(2), 180-203. https://doi.org/10.1080/08982112.2010.529481
- Li, J. and Chan, F. T. S. (2013), An Agent-Based Model of Supply Chains with Dynamic Structures, Applied Mathematical Modelling, 37(7), 5403-5413. https://doi.org/10.1016/j.apm.2012.10.054
- Lim, M. K., Tan, K., and Leung, S. C. H. (2013), Using a Multi-Agent System to Optimise Resource Utilisation in Multi-Site Manufacturing Facilities, International Journal of Production Research, 51(9), 2620-2638. https://doi.org/10.1080/00207543.2012.737953
- Mele, F. D., Espuna, A., and Puigjaner, L. (2006), Supply Chain Management through Dynamic Model Parameters Optimization, Industrial and Engineering Chemistry Research, 45(5), 1708-1721. https://doi.org/10.1021/ie050189t
- Mele, F. D., Guillen, G., Espuna, A., and Puigjaner, L. (2006), A Simulation-Based Optimization Framework for Parameter Optimization of Supply-Chain Networks, Industrial and Engineering Chemistry Research, 45(9), 3133-3148. https://doi.org/10.1021/ie051121g
- Mula, J., Campuzano-Bolarin, F., Diaz-Madronero, M., and Carpio, K. M. (2013), A System Dynamics Model for the Supply Chain Procurement Transport Problem : Comparing Spreadsheets, Fuzzy Programming and Simulation Approaches, International Journal of Production Research, 51(13), 4087-4104. https://doi.org/10.1080/00207543.2013.774487
- Rand, G. K. (2013), Supply Chain Simulation : A System Dynamics Approach for Improving Performance, Interfaces, 43(1), 99-101. https://doi.org/10.1287/inte.1120.0658
- Rolon, M. and Martinez, E. (2012), Agent-Based Modeling and Simulation of an Autonomic Manufacturing Execution System, Computers in Industry, 63(1), 53-78. https://doi.org/10.1016/j.compind.2011.10.005
- Roy, R. and Arunachalam, R. (2004), Parallel Discrete Event Simulation Algorithm for Manufacturing Supply Chains, Journal of the Operational Research Society, 55(6), 622-629. https://doi.org/10.1057/palgrave.jors.2601688
- Ruiz-Torres, A. J. and Mahmoodi, F. (2010), Safety Stock Determination Based on Parametric Lead Time and Demand Information, International Journal of Production Research, 48(10), 2841-2857. https://doi.org/10.1080/00207540902795299
- Santa-Eulalia, L. A., D'Amours, S., and Frayret, J. M. (2012), Agent-Based Simulations for Advanced Supply Chain Planning and Scheduling : The FAMASS Methodological Framework for Requirements Analysis, International Journal of Computer Integrated Manufacturing, 25(10), 963-980. https://doi.org/10.1080/0951192X.2011.652177
- Tako, A. A. and Robinson, S. (2012), The Application of Discrete Event Simulation and System Dynamics in the Logistics and Supply Chain Context, Decision Support Systems, 52(4), 802-815. https://doi.org/10.1016/j.dss.2011.11.015
- Vidalakis, C., Tookey, J. E., and Sommerville, J. (2013), Demand Uncertainty in Construction Supply Chains : A Discrete Event Simulation Study, Journal of the Operational Research Society, 64(8), 1194-1204. https://doi.org/10.1057/jors.2012.156
- Wangphanich, P., Kara, S., and Kayis, B. (2010), Analysis of the Bullwhip Effect in Multi-Product, Multi-Stage Supply Chain Systems-A Simulation Approach, International Journal of Production Research, 48(15), 4501-4517. https://doi.org/10.1080/00207540902950852
- Yoo, T., Cho, H., and Yucesan, E. (2010), Hybrid Algorithm for Discrete Event Simulation Based Supply Chain Optimization, Expert Systems with Applications, 37(3), 2354-2361. https://doi.org/10.1016/j.eswa.2009.07.039
- Yum, B., Kim, S., Seo, S., Byun, J., and Lee, S. (2013), The Taguchi Robust Design Method : Current Status and Future Directions, Journal of the Korean Institute of Industrial Engineers, 39(5), 325-341. https://doi.org/10.7232/JKIIE.2013.39.5.325