References
- Asuncion, A. and Newman, D. (2007), UCI machine learning repository, URL http://www.ics.uci.edu/-mlearn/MLRepository.html.
- Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., and Muller, K. R. (2010), How to explain individual classification decisions, The Journal of Machine Learning Research, 11, 1803- 1831.
- Bosco, G. L. and Pinello, L. (2009), A fuzzy one class classifier for multi layer model, Fuzzy Logic and Application, Lecture Notes in Computer Science, 5571, 124-131.
- Breiman, L. (2001), Random forests, Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Breiman, L., Friedman, J., Olshen, R., Stone, C., Steinberg, D., and Colla, P. (1983), CART : Classification and regression trees, Wadsworth : Belmont, CA, 156.
- Cortes, C. and Vapnik, V. (1995), Support-vector networks, Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
- Desir, C., Bernard, S., Petitjean, C., and Heutte, L. (2012), A random forest based approach for one class classification in medical imaging, Machine Learning in Medical Imaging, Lecture Notes in Computer Science, 7588, 250-257.
- Domingos, P. and Hulten, G. (2000), Mining high-speed data streams, Proceedings of the 2000 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 71-80.
- Hullermeier, E. (2011), Fuzzy sets in machine learning and data mining, Applied Soft Computing, 11(2), 1493-1505. https://doi.org/10.1016/j.asoc.2008.01.004
- Jeong, I. K. and Choi, J. Y. (2015), One-class classification using hyper-rectangles, Proceedings of the KORMS/KIIE/ESK/KSS 2015 Spring Conference, Jeju, 2265-2276.
- Juszczak, P., Tax, D. M. J., Pekalska, E., and Duin, R. P. W. (2009), Minimum spanning tree based one-class classifier, Neurocomputing, 72(7-9), 1859-1869. https://doi.org/10.1016/j.neucom.2008.05.003
- Kemmler, M., Rodner, E., Wacker, E.-S., and Denzler, J. (2013), One-class classification with gaussian processes, Pattern Recognition, 46(12), 3507-3518. https://doi.org/10.1016/j.patcog.2013.06.005
- Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., and Meltzer, P. S. (2001), Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature medicine, 7(6), 673-679. https://doi.org/10.1038/89044
- Khan, S. and Madden, M. G. (2014), One-class classification : taxonomy of study and review of techniques, The Knowledge Engineering Review, 29(3), 345-374. https://doi.org/10.1017/S026988891300043X
- Letouzey, F., Denis, F., and Gilleron, R. (2000), Learning from positive and unlabeled examples, Proceedings of 11th International Conference on Algorithmic Learning Theory, Sydney, Australia.
- Li, C., Zhang, Y., and Li, X. (2009), OcVFDT : one-class very fast decision tree for one-class classification of data streams, Proceedings of the 3rd International Workshop on Knowledge Discovery from Sensor Data, 79-86.
- MacQueen, J. (1967), Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1(14), 281-297.
- Manevitz, L. and Yousef, M. (2000), Document classification on neural networks using only positive Examples, Proceedings of 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 304-306.
- Manevitz, L. and Yousef, M. (2007), One-class document classification via Neural Networks, Neurocomputing, 70, 1466-1481. https://doi.org/10.1016/j.neucom.2006.05.013
- Scholkopf, B., Williamson, R., Smola, A., Taylor, J. S. and Platt, J. (2000), Support vector method for novelty detection, Advances in Neural Information Processing Systems, 12, 582-588.
- Schmidhuber, J. (2015), Deep learning in neural networks : An overview, Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- Skabar, A. (2003), Single-class classifier learning using neural networks : an application to the prediction of mineral deposits, Proceedings of the Second International Conference on Machine Learning and Cybernetics, 4, 2127-2132.
- Tax, D. M. J. and Duin, R. P. W. (1999a), Data domain description using support vectors, Proceedings of European Sysmposium on Artificial Neural Networks, Brussels, 251-256.
- Tax, D. M. J. and Duin, R. P. W. (1999b), Support vector domain description, Pattern Recognition Letters, 20, 1191-1199. https://doi.org/10.1016/S0167-8655(99)00087-2
- Tax, D. M. J. (2001), One-class Classification, PhD thesis, Delft University of Technology.
- Tax, D. M. J. (2010), One-class classifier results, URL http://homepage.tudelft.nl/n9d04/occ/.
- Quinlan, J. R. (1993), C4.5 : Programs for Machine Learning, Morgan Kaufmann, California.
- Utkin, L. V. (2012), Fuzzy one-class classification model using contamination neighborhoods, Advances in Fuzzy Systems, 22, doi: 10.1155/2012/984325.
Cited by
- An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation vol.41, pp.2, 2018, https://doi.org/10.11627/jkise.2018.41.2.056