DOI QR코드

DOI QR Code

부호율 1/2인 변조부호의 픽셀당 레벨 수에 따른 홀로그래픽 데이터 저장장치 성능 분석

Performance Analysis of Holographic Data Storage Depending on the Number of Levels Per Pixel of the Code Rate 1/2 Modulation Codes

  • 정성권 (숭실대학교 전자정보공학부) ;
  • 이재진 (숭실대학교 전자정보공학부)
  • Jeong, Seongkwon (School of Electronics Engineering, Soongsil University) ;
  • Lee, Jaejin (School of Electronics Engineering, Soongsil University)
  • 투고 : 2015.09.04
  • 심사 : 2015.09.25
  • 발행 : 2015.10.25

초록

본 논문에서는 차세대 저장장치로 주목받고 있는 멀티레벨 홀로그래픽 데이터 저장장치에서 여러 가지 레벨의 변조부호를 제안하고 이들의 성능을 알아본다. 멀티레벨 변조부호는 한 픽셀에 1비트 이상 저장이 가능하기 때문에 저장용량을 증가시킬 수 있으며, 동일한 픽셀 개수에서 더 많은 코드워드의 표현이 가능하다. 따라서 코드워드간 최소거리가 큰 변조부호를 만들 수 있으며 이런 성질은 오류정정 능력을 가지는 변조부호를 구성할 수 있다. 부호율을 1/2로 고정하고 제안된 변조부호들의 성능을 조사한 결과, 레벨 수가 커서 최소거리가 큰 변조부호의 성능보다 낮은 레벨이기 때문에 최소거리가 작은 변조부호가 더 좋은 성능을 보였다.

We propose three multi-level modulation codes of the code rate 1/2 for holographic data storage considered as a promising candidate for next generation storage systems. Since a pixel with multi-levels can represent more than 1 bit, it is possible to increase the storage capacity and have many codewords. Thus, we can choose a code that the minimum distance is as far as possible. When we compare the codes with the code rate 1/2, the performance of the code with small number of levels is better than that of large number of levels.

키워드

참고문헌

  1. L. Hesselink, S.S. Orlov, and M.C. Bashaw, "Holographic data storage systems," Proc. IEEE, Vol. 92, no. 8, pp. 1231-1280, August 2004. https://doi.org/10.1109/JPROC.2004.831212
  2. S. G. Srinivasa, O. Momtahan, A. Karbaschi, S. W. McLaughlin, A. Adibi, and F. Fekri, "M-ary, binary, and space-volume multiplexing trade-offs for holographic channels," Proc. IEEE Globecom 2006, pp. 1-5, San Francisco, USA, November 2006.
  3. U. Wachsmann, R. F. H. Fischer, and J.B. Huber, "Multilevel Codes: Theoretical Concepts and Practical Design Rules," IEEE. Trans. Inform. Theory, Vol.45, pp. 1361-1391, July 1999. https://doi.org/10.1109/18.771140
  4. J. Kim, J. Lee, T. Park and S. Im, "Expectation-maximization based adaptive threshold detection algorithm for multi-level holographic data storage," Jpn. J. Appl. Phys., Vol.50, no. 9, pp. 09MB01, September 2011.
  5. K. Park, B. Kim, and J. Lee, "A 6/9 Four-Ary Modulation Code for Four-Level Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 52, no. 9, pp. 09LE05, September 2013 https://doi.org/10.7567/JJAP.52.09LE05
  6. S. Kim and J. Lee, "A Simple 2/3 Modulation Code for Multi-Level Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 52, no. 9, pp. 09LE04, September 2013 https://doi.org/10.7567/JJAP.52.09LE04
  7. G. Kim and J. Lee, "2/3 Modulation Code and Its Vterbi Decoder for 4-level Holographic Data Storage," J. KICS, Vol. 38A, no. 10, pp. 827-832, October 2013 https://doi.org/10.7840/kics.2013.38A.10.827
  8. J. Kim, Y. Moon, and J. Lee, "Iterative Decoding between Two-Dimensional Soft Output Viterbi Algorithm and Error Correcting Modulation Code for Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 50, no. 9, pp. 09MB02, September 2011. https://doi.org/10.7567/JJAP.50.09MB02
  9. D. Park and J. Lee, "k/(k+1) Tone-Controllable Codes for Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 50, no. 9, pp. 09ME12, September 2011. https://doi.org/10.7567/JJAP.50.09ME12
  10. M. Keskinoz and B. V. K. V. Kumar, "Efficient modeling of volume holographic storage channels (VHSC)," Proc. SPIE, Vol. 4090, no. 1, pp. 205-210, January 2000.
  11. D. E. Pansatiankul and A. A. Sawchuk, "Multi-dimensional modulation codes and error correction for page-oriented optical data storage," Proc. SPIE, Vol. 4342, pp. 393-400, 2002.
  12. G. Yang, J. Kim, and J. Lee, "Mis-alignment channel performance of error correcting 4/6 modulation codes for holographic data storage," J. KICS, vol. 35, no. 12, pp. 971-976, December 2010.