DOI QR코드

DOI QR Code

Influence of elevated temperatures on the physiological response of hemolymph from two species of abalone, Haliotis gigantea and Haliotis discus discus (Reeve, 1846)

수온 증가에 따른 말전복, Haliotis gigantea과 둥근전복, Haliotis discus discus (Reeve, 1846) hemolymph의 생리학적 변화

  • Min, Eun-Young (Department of Marine Life-Science,Pukyong National University) ;
  • Kim, Shin-Hu (Department of Marine Life-Science,Pukyong National University) ;
  • Hwang, In-Ki (Department of Marine Life-Science,Pukyong National University) ;
  • Kim, Kyeong-Wook (Department of Marine Life-Science,Pukyong National University) ;
  • Park, Bo-Mi (Department of Marine Life-Science,Pukyong National University) ;
  • Lee, Jung Sick (Department of Aqualife Medicine, Chonnam National University) ;
  • Kang, Ju-Chan (Department of Marine Life-Science,Pukyong National University)
  • 민은영 (부경대학교 수산생명의학과) ;
  • 김신후 (부경대학교 수산생명의학과) ;
  • 황인기 (부경대학교 수산생명의학과) ;
  • 김경욱 (부경대학교 수산생명의학과) ;
  • 박보미 (부경대학교 수산생명의학과) ;
  • 이정식 (전남대학교 수산생명의학과) ;
  • 강주찬 (부경대학교 수산생명의학과)
  • Received : 2015.09.07
  • Accepted : 2015.09.30
  • Published : 2015.09.30

Abstract

This study was conducted to examine the effects of alterations in water temperature (WT) on biochemical and immunological factors in the hemolymph of the abalones, Haliotis gigantea and H. discus discus. The abalone were exposed to various WT; 18, 20, 22, 24, 26 and $28^{\circ}C$ for 96 hours. In biochemical factors, total-protein (TP), glucose, magnesium (Mg), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were not significant changes in hemolymph of H. gigantea and H. discus discus. But calcium was significantly increased by high WT (${\geq}24^{\circ}C$). In immunological factor, The phenoloxidase (PO) activity was decreased in hemolymph of H. gigantea and H. discus discus exposed to high temperature (${\geq}22^{\circ}C$) compared to the control (P < 0.05). Whereas alkaline phosphatase (ALP) was not significantly changed. These results suggested that high temperature adversely affects the immunity of H. gigantea and H. discus discus.

본 연구에서는 수온 증가에 따른 말전복 (Haliotis gigantea) 과 둥근전복 (H. discus discus) 헤모림프의 생리 및 면역학적 변화를 관찰하기 위하여 위 두 전복을 20, 22, 24, 26 및 $28^{\circ}C$ 수온에 각각 4 일간 노출시켰다. 노출 결과, 헤모림프의 totalo-protein (TP), glucose, calcium (Ca) 은 둥근전복 (H. discus discus)이 말전복 (H. gigantea) 보다 높은 값을 보였으나, magnesium (Mg), alkaline phosphatase (ALP) 두 전복에서 유사한 값을 보였다. 그리고 면역인자인 PO에서는 둥근전복 (H. discus discus)이 더 높게 나타났다. 수온 증가에 따른 헤모림프의 TP, glucose, Mg, AST, ALT 및 ALP는 유의적인 변화가 나타나지 않았다. 하지만 헤모림프의 Ca 농도는 둥근전복 (H. discus discus)에서 $24^{\circ}C$ 이상, 말전복 (H. gigantea)에서는 $26^{\circ}C$ 이상의 수온에서 유의적 증가를 보였다. 그리고 면역인자인 phenoloxidase (PO) 는 둥근전복 (H. discus discus)은 $22^{\circ}C$ 이상 말전복 (H. gigantea) 에서는 $26^{\circ}C$ 이상의 수온에서 유의적 감소를 나타내었다. 결론적으로 말전복 (H. gigantea)은 $24^{\circ}C$ 이상에서 혈액학적 변화를 보였고, $26^{\circ}C$ 이상에서 면역학적 변화를 보였다. 둥근전복 (H. discus discus)은 $26^{\circ}C$ 이상에서 혈액학적 변화를 보였고, $22^{\circ}C$ 이상에서 면역학적 변화를 나타내었다.

Keywords

References

  1. Agrahari S., Pandey K.C., Gopal K. (2007) Biochemical alteration induced by monocrotophos in the blood plasma of Wsh, Channa punctatus (Bloch). Pesticide Biochemistry and Physiology, 88: 268-272. https://doi.org/10.1016/j.pestbp.2007.01.001
  2. Ashida, M., Yamazaki, H.I. (1990) Biochemistry of the phenoloxidase system in insets: with special reference to its activation. In molting and metamorohosis. Springer. Berlin, p239-265.
  3. Anderson, R.S., Giam, C.S., Ray, L.E., Tripp, M.R. (1981) Effects of environmental pollutants on immunological competency in the clam, Mercenaria mercenaria: impacted bacterial clearance. Aquatic Toxicology, 1: 187-195. https://doi.org/10.1016/0166-445X(81)90014-X
  4. Barton, B.A. (1991) Physiological changes in fish from stress in aquaculture with emphasis in the response and effects of corticosteroids. Annual Review of Fish diseases, 1: 3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  5. Baeck, S.K., Min, E.Y., Kang, J.C. (2014) Combined effects of copper and temperature on hematological constituents in the rock fish, Sebastes schlegeli. Jounal of Fish Pathology, 27(1): 57-65. https://doi.org/10.7847/jfp.2014.27.1.057
  6. Byrne, R.A., Shipman, B.N., Smatrean, N.J., Dietz, T.H., McMahon, R.F. (1991) Acid-base balance during emergence in the freshwater bivalve Corbicula fluminea. Physiological Zoology, 64: 748-766. https://doi.org/10.1086/physzool.64.3.30158205
  7. Chang, Y.J., Hur, J.W., Kim, H.K., Lee, J.K. (2001) Stress in olive flounder (Paralichthys olivaceus) and fat cod (Hexagrammos otakII) by the sudden drop and rise of water temperature. Korean Journal of Fisheries and Aquatic Sciences, 34(2): 91-97.
  8. Cheng, T.C. (1981) Bivalves. In: Invertebrate blood cell (ed. by Ratcliffe, N.A., Rowley, A.F.), London Academic Press, London. pp. 233-299.
  9. Cheng, W., Li C.H., Chen, J.C. (2004a) Effect of dissolved oxygen on the immune responses of Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Aquaculture, 232: 103-115. https://doi.org/10.1016/S0044-8486(03)00488-5
  10. Cheng W., Hsiao I.S., Chen J.C. (2004b) Effect of ammonia on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish & Shellfish Immunology, 17: 193e202. https://doi.org/10.1016/j.fsi.2004.03.004
  11. Cong R., Sun W., Liu G., Fan T., Meng X., Yang L., Zhu L. (2005) Purification and characterization of phenoloxidase from clam Ruditapes philippinarum. Fish & Shellfish Immunology, 18: 61e70. https://doi.org/10.1016/j.fsi.2004.06.001
  12. Feng, S.Y., Canzonier, W.J. (1970) Humoral responses in the American oyster (Crssostrea virginica) infected with Bucephalus sp. and Minchinia nelsoni. Special Publications. American Fisheries Society. Publ., 5: 497-510.
  13. Firat, O., Cogun, H.Y., Aslanyavrusu, S., Kargin, F. (2009) Antioxidant responses and metal accumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn + Cd exposure. Journal of Applied Toxicology, 29: 295-301. https://doi.org/10.1002/jat.1406
  14. Jang, M.S., Jang, J.R., Prak, H.Y., Yoon, H.d. (2010) Overall composition, and levels of fatty acids, amino acids, and necleotide-type compounds in wild abalone Haliotis gigantea and cultured abalone Halitotis discus hannai. Korean Journal of Food Preservation, 17: 533-540.
  15. Jee, J.H., Kim, S.G., Kang, J.C. (2004) Effects of phenanthrene on growth and basic physiological functions of the olive flounder, Paralichthys olivaceus. Journal of Experimental Marine Biology and Ecology, 304: 123-136. https://doi.org/10.1016/j.jembe.2003.12.001
  16. Johnson J.K., Rocheleau T.A., Hillyer J.F., Chen C.C., Li J., Christensen B.M. (2003) A potential role for phenylalanine hydroxylase in mosquito immune responses. Insect Biochemistry and Molecular Biology, 33: 345-354. https://doi.org/10.1016/S0965-1748(02)00257-6
  17. Kim T.H., KIm K.J., Choe M.K., Yeo I.K. (2006) Physiological Changes of Juvenile Abalone, Haliotis sieboldII Exposed to Acute Water-temperature Stress. Jounal of Aquaculture, 19(2): 77-83,
  18. Kim T.H., Yang M.H., Choe M.K., Han S.J., Yeo I.K. (2005) Physiological Studies in Acute Water-temperature Stress of Juvenile Abalone, Haliotis discus hannai. Jounal of Aquaculture, 18(1): 7-12
  19. KNSO (2011) Korea National Statistical office. Fishery production survey DB, Daejeon, Korea.
  20. Liang S., Luo X., You W., Luo L., Liu C.K., Zhang J.F., Shen H., Wang X.R., Wang W.M. (2014) The role of hybridization in improving the immnune response and thermal tolerance of abalone. Fish and Shellfish Immunology, 39: 69-77. https://doi.org/10.1016/j.fsi.2014.04.014
  21. Lin A., Meyers M.A. (2005) Growth and structure in abalone shell. Materials Science and Engineering: A, 390(A): 27-41. https://doi.org/10.1016/j.msea.2004.06.072
  22. Min E.Y., Jeong J.W., Kang J.C. (2014a) Thermal effects on antioxidant enzymes responses in Tilapia, Oreochromis niloticus exposed Arsenic. Jounal of Fish Pathology, 27(2): 115-125. https://doi.org/10.7847/jfp.2014.27.2.115
  23. Min E.Y., Baeck S.K., Kang J.C. (2014b) Combined effects of copper and temperature on antioxidant enzymes in the black rockfish Sebastes schlegeli. Fisheries and Aquatic Sciences, 17(3): 345-353. https://doi.org/10.5657/FAS.2014.0345
  24. Min E.Y., Lee J.S., Kwak I.S., Kim J.W., Kang J.C. (2014c) Changes of enzyme activity in the hemolymph and hepatopancreas of the abalone, Haliotis discus hannai (Ino, 1953) exposed to cadmium. Korean Jounal of Malacology, 30(1): 41-49 https://doi.org/10.9710/kjm.2014.30.1.41
  25. Min E.Y., Lee J.S., Kim J.W., Jeon M.A., Kang J.C. (2015) Influence of Elevated Temperatures on the Physiological Response of Hemolymph from Two Species of the Abalone, Haliotis discus hannai and H. discus discus. Korean Jounal of Malacology, 31(1): 1-8 2015. https://doi.org/10.9710/kjm.2015.31.1.1
  26. Morris S., Butler S.L. (1996) Hemolymph respiratory gas, acid-base, and ion status of the amphibious purple shore crab Leptograpsus variegates (Fabricus) during immersion and environmental hypoxia. Journal of Crustacean Biology, 16: 253-266. https://doi.org/10.1163/193724096X00045
  27. Nikinmaa M., Jaervenpaeae T., Westman K., Soivio A. (1985) Effects of hypoxia and acidification on the haemolymph pH value and ion concentration in the freshwater crayfish (Astacus astacus L.). Finnish Game and Fisheries Research Institute, 5: 17-22.
  28. Park C.J., Min B.H., Kim K.S., Lee J.W., Lee J.H., Noh J.K., Kim H.C., Park J.W., Myeong J.I. (2011) Physiological responses on low water temperature stress of Pacific abalone, Haliotis discus hannai. Korean Journal of Malacology, 27: 317-322. https://doi.org/10.9710/kjm.2011.27.4.317
  29. Park, M.W., Kim H.J., Kim B.H., Son M.H., Jeon M.A., Lee J.S. (2013) Changes of survival rate, falling rate and foot histology of the abalone, Haliotis discus hannai (Ino, 1952) with water temperature and salinity. Korean Journal of Malacology, 29(4): 303-311. https://doi.org/10.9710/kjm.2013.29.4.303
  30. Park H.J., Kang J.C. (2012) Biochemical Changes in the Hemolymph and Hepatopancreas of Abalone Haliotis discus hannai Exposed to Copper. Korean Journal of Fisheries and Aquatic Sciences, 45(2): 154-160. https://doi.org/10.5657/KFAS.2012.0154
  31. Ryan S.N. (1995) The effect of chronic heat stress on cortisol levels in the Antartic fish Pagothenia borchgrevinki. Experimentia, 51: 768-774. https://doi.org/10.1007/BF01922428
  32. Sastry K.V., Sharma K., (1980) Effects of mercuric chloride on the activities of brain enzymes in a freshwater teleost Ophiocephalus (Channa) punctatus. Archives of Environmental Contamination and Toxicology, 9: 425-430. https://doi.org/10.1007/BF01055294
  33. Seong K.T., Hwang J.D., Han I.S., Go W.J., Suh Y.S., Lee J.Y. (2010) Characteristic for long-term trends of temperature in the Koreans waters. Journal of the Korean Society of Marine Environment & Safety, 16: 353-360.
  34. Shin Y.K., Jun J.C., Im J.H., Kim D.W., Son M.H., Kim E.O. (2011) Physiological response in abalone Haliotis discus hannai with different salinity. Korean Journal of Malacology, 27: 283-289. https://doi.org/10.9710/kjm.2011.27.4.283
  35. Stohs S.J., Bagchi D., Hassoun E., Bagchi M. (2000) Oxidative mechanism in the toxicity of chromium and cadmium ions. Journal of environmental Pathology Toxicology and Oncology, 19: 201-213.
  36. SIIderhall K., Cerenius L., Johansson M.W. (1994) The prophenoloxidase activating system and its role in invertebrate defense. In Primordial immunity: Foundations for the vertebrate immune system. Annals of the New York Academy of Sciences, 712: 155-161. https://doi.org/10.1111/j.1749-6632.1994.tb33570.x
  37. Shahsavani D., Mohri M., Gholipour Kanani H. (2010) Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiology and Biochemistry, 36:39-43. https://doi.org/10.1007/s10695-008-9277-3
  38. Smutna M., Vorlova L., Svobodova Z. (2002) Pathobiochemistry of Ammonia in the Internal Environment of Fish (Review). journal of Acta veterinaria Brno, 71: 169-181. https://doi.org/10.2754/avb200271020169
  39. Travers M.A., Goic N.L., Huchette S., Koken M., Paillar C. (2008) Summer immune depression associated with increased susceptibility of the European abalone, Haliotis tuberculata to Vibrio harveyi infection. Fish & Shellfish Immunology, 25(6): 800-808. https://doi.org/10.1016/j.fsi.2008.08.003
  40. Waring C.P., Stagg R.M., Roxton M.G. (1996) Physiological responses to handling in the turbot. Jounal of Fish Biology, 48: 161-173. https://doi.org/10.1111/j.1095-8649.1996.tb01110.x
  41. Yang H.S., Park K.II., Hong C.H., Choi K.S. (2008) Effects of Salinity Stress in the Composition of Free Amino Acids of the Pacific abalone Haliotis discus discus. Jounal of Aquaculture, 21(4), 218-225.
  42. Yang J.L., Chen H.C. (2003) Serum Metabolic Enzyme Activities and Hepatocyte Ultrastructure of Common Carp after Gallium Exposure. Zoological Studies, 42(3): 455-461.
  43. Zaccaron da Silva A., Zanette J., Ferrira J.F., Guzenski J., Marques M.R.F., Bainy A.C.D. (2005) Effect of salinity on biomarker responses in Crassostrea rhizophorae (Mollusca, Bivalvia) exposed to diesel oil. Ecotoxicology and Environmental Safety, 62: 376-382. https://doi.org/10.1016/j.ecoenv.2004.12.008