References
- Alaidroos, A. and Krarti, M. (2015), "Optimal design of residential building envelope systems in the Kingdom of Saudi Arabia", Energ. Buildings, 86, 104-117. https://doi.org/10.1016/j.enbuild.2014.09.083
- Alshamrani, O.S., Galal, K. and Alkass, S. (2014), "Integrated LCA - LEED sustainability assessment model for structure and envelope systems of school buildings", Build. Environ., 80, 61-70. https://doi.org/10.1016/j.buildenv.2014.05.021
- Ataei, A., Gharaie, M., Parand, R. and Panjeshahi, E. (2010), "Application of ozone treatment and pinch technology in cooling water systems design for water and energy conservation", Int. J. Energ. Res., 34(6), 494-506. https://doi.org/10.1002/er.1568
- Boji, M. (2006), "Application of overhangs and side fins to high-rise residential buildings in Hong Kong", Civil Eng. Environ. Syst., 23(4), 271-285. https://doi.org/10.1080/10286600600888532
- Conner, A. (2005), "Reducing cooling towers cost with the ozone technology", Clean Water Ozone Systems, Inc.
- Ebrahimpour, A. and Maerefat, M. (2008), "Application of advanced glazing and overhangs in residential buildings", Energ. Convers. Manage., 52(1), 212-219.
- Energyplus (2014) http://www.energyplus.gov/
- Gude, V.G. (2015), "Energy and water autarky of wastewater treatment and power generation systems", Renew. Sust. Energ. Rev., 45, 52-68. https://doi.org/10.1016/j.rser.2015.01.055
- Haves, P., See, R. and Settlemyre, K. (2014), "Simergy - A graphicaluser interface for energyplus", Public interest energy research program; Final project report.
- Heikkila, P. and Milosavljevic, N. (2001), "A comprehensive approach to cooling tower design", Appl. Therm. Eng, 21(9), 899-915. https://doi.org/10.1016/S1359-4311(00)00078-8
- Maestre, I.R., Blazquez, J.L.F., Gallero, F.J.G. and Cubillas, P.R. (2015), "Influence of selected solar positions for shading device calculations in building energy performance simulations", Energ. Buildings, 101, 144-152. https://doi.org/10.1016/j.enbuild.2015.05.004
- Panjeshahi, M.H. and Ataei, A. (2008), "Application of an environmentally optimum cooling water system design to water and energy conservation", Int. J. Environ. Sci. Tech., 5(2), 251-262. https://doi.org/10.1007/BF03326019
- Panjeshahi, M.H., Ataei, A., Gharaie, M. and Parand, R. (2009), "Optimum design of cooling water systems for energy and water conservation", Chem. Eng. Res. Des., 87(2), 200-209. https://doi.org/10.1016/j.cherd.2008.08.004
- Parker, S.A. (1998), Ozone Treatment For Cooling Tower, The U.S. Department of Energy; Fed. Tech. Alert J., New York, NY, USA.
- Rhodes, J.D., Gorman, W.H., Upshaw, C.R. and Webber, M.E. (2015), "Using BEopt (Energy Plus) with energy audits and surveys to predict actual residential energy usage", Energ. Buildings, 86, 808-816. https://doi.org/10.1016/j.enbuild.2014.10.076
- Viera, M.R., Guiamet, P.S., de Melle, M.F.L. and Videla, H.A. (2000), "Use of dissolved ozone for controlling planktonic and sessile bacteria in industrial cooling systems", Int. Biodeter. Biodegr., 44(4), 201-207. https://doi.org/10.1016/S0964-8305(99)00078-5
- Walsh, B.P., Surray, S.N. and O'Sullivan, D.T.J. (2015), "The water energy nexus, an ISO 50001 water case study and the need for a water value system", Water Resour. Ind., 10, 15-28. https://doi.org/10.1016/j.wri.2015.02.001
Cited by
- Toward residential building energy conservation through the Trombe wall and ammonia ground source heat pump retrofit options, applying eQuest model vol.4, pp.2, 2016, https://doi.org/10.12989/eri.2016.4.2.107